Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Signal ; 15(755): eabo3507, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36219682

ABSTRACT

The canonical members of the Jagged/Serrate and Delta families of transmembrane ligands have an extracellular, amino-terminal C2 domain that binds to phospholipids and is required for optimal activation of the Notch receptor. Somatic mutations that cause amino substitutions in the C2 domain in human JAGGED1 (JAG1) have been identified in tumors. We found in reporter cell assays that mutations affecting an N-glycosylation site reduced the ligand's ability to activate Notch. This N-glycosylation site located in the C2 domain is conserved in the Jagged/Serrate family but is lacking in the Delta family. Site-specific glycan analysis of the JAG1 amino terminus demonstrated that occupancy of this site by either a complex-type or high-mannose N-glycan was required for full Notch activation in reporter cell assays. Similarly to JAG1 variants with defects in Notch binding, N-glycan removal, either by mutagenesis of the glycosylation site or by endoglycosidase treatment, reduced receptor activation. The N-glycan variants also reduced receptor activation in a Notch signaling-dependent vascular smooth muscle cell differentiation assay. Loss of the C2 N-glycan reduced JAG1 binding to liposomes to a similar extent as the loss of the entire C2 domain. Molecular dynamics simulations suggested that the presence of the N-glycan limits the orientation of JAG1 relative to the membrane, thus facilitating Notch binding. These data are consistent with a critical role for the N-glycan in promoting a lipid-binding conformation that is required to orient Jagged at the cell membrane for full Notch activation.


Subject(s)
C2 Domains , Liposomes , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Glycoside Hydrolases/metabolism , Humans , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Ligands , Lipids , Mannose , Membrane Proteins/genetics , Membrane Proteins/metabolism , Polysaccharides/genetics , Receptors, Notch/genetics , Receptors, Notch/metabolism
2.
J Phys Chem B ; 126(15): 2789-2797, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35394774

ABSTRACT

The generation and sensing of membrane curvature by proteins has become of increasing interest to researchers with multiple mechanisms, from hydrophobic insertion to protein crowding, being identified. However, the role of charged lipids in the membrane curvature-sensing process is still far from understood. Many proteins involved in endocytosis bind phosphatidylinositol 4,5-bisphosphate (PIP2) lipids, allowing these proteins to accumulate at regions of local curvature. Here, using coarse-grained molecular dynamics simulations, we study the curvature-sensing behavior of the ANTH domain, a protein crucial for endocytosis. We selected three ANTH crystal structures containing either an intact, split, or truncated terminal amphipathic helix. On neutral membranes, the ANTH domain has innate curvature-sensing ability. In the presence of PIP2, however, only the domain with an intact helix senses curvature. Our work sheds light on the role of PIP2 and its modulation of membrane curvature sensing by proteins.


Subject(s)
Endocytosis , Phosphatidylinositols , Cell Membrane/chemistry , Molecular Dynamics Simulation , Phosphatidylinositols/metabolism , Proteins/metabolism
3.
Biosci Rep ; 42(4)2022 04 29.
Article in English | MEDLINE | ID: mdl-35297484

ABSTRACT

Peripheral membrane proteins (PMPs) can reversibly and specifically bind to biological membranes to carry out functions such as cell signalling, enzymatic activity, or membrane remodelling. Structures of these proteins and of their lipid-binding domains are typically solved in a soluble form, sometimes with a lipid or lipid headgroup at the binding site. To provide a detailed molecular view of PMP interactions with the membrane, computational methods such as molecular dynamics (MD) simulations can be applied. Here, we outline recent attempts to characterise these binding interactions, focusing on both intracellular proteins, such as phosphatidylinositol phosphate (PIP)-binding domains, and extracellular proteins such as glycolipid-binding bacterial exotoxins. We compare methods used to identify and analyse lipid-binding sites from simulation data and highlight recent work characterising the energetics of these interactions using free energy calculations. We describe how improvements in methodologies and computing power will help MD simulations to continue to contribute to this field in the future.


Subject(s)
Lipids , Molecular Dynamics Simulation , Binding Sites , Cell Membrane/metabolism , Lipids/analysis , Membrane Proteins/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...