Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Heart J Digit Health ; 3(4): 600-609, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36710896

ABSTRACT

Aims: Current early risk stratification of coronary artery disease (CAD) consists of pre-test probability scoring such as the 2019 ESC guidelines on chronic coronary syndromes (ESC2019), which has low specificity and thus rule-out capacity. A newer clinical risk factor model (risk factor-weighted clinical likelihood, RF-CL) showed significantly improved rule-out capacity over the ESC2019 model. The aim of the current study was to investigate if the addition of acoustic features to the RF-CL model could improve the rule-out potential of the best performing clinical risk factor models. Methods and results: Four studies with heart sound recordings from 2222 patients were pooled and distributed into two data sets: training and test. From a feature bank of 40 acoustic features, a forward-selection technique was used to select three features that were added to the RF-CL model. Using a cutoff of 5% predicted risk of CAD, the developed acoustic-weighted clinical likelihood (A-CL) model showed significantly (P < 0.05) higher specificity of 48.6% than the RF-CL model (specificity of 41.5%) and ESC 2019 model (specificity of 6.9%) while having the same sensitivity of 84.9% as the RF-CL model. Area under the curve of the receiver operating characteristic for the three models was 72.5% for ESC2019, 76.7% for RF-CL, and 79.5% for A-CL. Conclusion: The proposed A-CL model offers significantly improved rule-out capacity over the ESC2019 model and showed better overall performance than the RF-CL model. The addition of acoustic features to the RF-CL model was shown to significantly improve early risk stratification of symptomatic patients suspected of having stable CAD.

2.
Physiol Meas ; 42(10)2021 11 26.
Article in English | MEDLINE | ID: mdl-34649235

ABSTRACT

Objective. The aim of this study was to find spectral differences of diagnostic interest in heart sound recordings of patients with coronary artery disease (CAD) and healthy subjects.Approach. Heart sound recordings from three studies were pooled, and patients with clear diagnostic outcomes (positive: CAD and negative: Non-CAD) were selected for further analysis. Recordings from 1146 patients (191 CAD and 955 Non-CAD) were analyzed for spectral differences between the two groups using Welch's spectral density estimate. Frequency spectra were estimated for systole and diastole segments, and time-frequency spectra were estimated for first (S1) and second (S2) heart sound segments. An ANCOVA model with terms for diagnosis, age, gender, and body mass index was used to evaluate statistical significance of the diagnosis term for each time-frequency component.Main results. Diastole and systole segments of CAD patients showed increased energy at frequencies 20-120 Hz; furthermore, this difference was statistically significant for the diastole. CAD patients showed decreased energy for the mid-S1 and mid-S2 segments and conversely increased energy before and after the valve sounds. Both S1 and S2 segments showed regions of statistically significant difference in the time-frequency spectra.Significance. Results from analysis of the diastole support findings of increased low-frequency energy from previous studies. Time-frequency components of S1 and S2 sounds showed that these two segments likely contain heretofore untapped information for risk assessment of CAD using phonocardiography; this should be considered in future works. Further development of features that build on these findings could lead to improved acoustic detection of CAD.


Subject(s)
Coronary Artery Disease , Heart Sounds , Coronary Artery Disease/diagnosis , Heart , Humans , Phonocardiography , Signal Processing, Computer-Assisted , Sound Recordings
3.
Eur Heart J Digit Health ; 2(2): 279-289, 2021 Jun.
Article in English | MEDLINE | ID: mdl-36712398

ABSTRACT

Aims: Recent technological advances enable diagnosing of obstructive coronary artery disease (CAD) from heart sound analysis with a high negative predictive value. However, the prognostic impact of this approach remains unknown. To investigate the prognostic value of heart sound analysis as two scores, the Acoustic-score and the CAD-score, in patients with suspected CAD which is treated according to standard of care. Methods and results: Consecutive patients with angina symptoms referred for coronary computed tomography angiography (CTA) were enrolled. The Acoustic-score was developed from eight acoustic CAD-related features. This score was combined with risk factors to generate the CAD-score. A cut-off score >20 was pre-specified for both scores to indicate disease. If coronary CTA raised suspicion of obstructive CAD, patients were referred to invasive angiography and revascularized when indicated. Of 1675 enrolled patients, 1464 (87.4%) were included in this substudy. The combined primary endpoint was all-cause mortality and myocardial infarction (n = 26). Follow-up was 3.1 (2.7-3.4) years. Of patients with primary endpoints, the Acoustic-score was >20 in 25 (96%); the CAD-score was >20 in 22 (85%). In an unadjusted Cox analysis of the primary endpoints, the hazard ratio for scores >20 under current standard clinical care was 12.6 (1.7-93.2) for the Acoustic-score and 5.4 (1.9-15.7) for the CAD-score. The CAD-score contained prognostic information even after adjusting for lipid-lowering therapy initiation, stenosis at CTA, and early revascularization. Conclusion: Heart sound analysis seems to carry prognostic information and may improve initial risk stratification of patients with suspected CAD. Clinicaltrialsorg ID: NCT02264717.

4.
Heart ; 104(11): 928-935, 2018 06.
Article in English | MEDLINE | ID: mdl-29122932

ABSTRACT

OBJECTIVE: Diagnosing coronary artery disease (CAD) continues to require substantial healthcare resources. Acoustic analysis of transcutaneous heart sounds of cardiac movement and intracoronary turbulence due to obstructive coronary disease could potentially change this. The aim of this study was thus to test the diagnostic accuracy of a new portable acoustic device for detection of CAD. METHODS: We included 1675 patients consecutively with low to intermediate likelihood of CAD who had been referred for cardiac CT angiography. If significant obstruction was suspected in any coronary segment, patients were referred to invasive angiography and fractional flow reserve (FFR) assessment. Heart sound analysis was performed in all patients. A predefined acoustic CAD-score algorithm was evaluated; subsequently, we developed and validated an updated CAD-score algorithm that included both acoustic features and clinical risk factors. Low risk is indicated by a CAD-score value ≤20. RESULTS: Haemodynamically significant CAD assessed from FFR was present in 145 (10.0%) patients. In the entire cohort, the predefined CAD-score had a sensitivity of 63% and a specificity of 44%. In total, 50% had an updated CAD-score value ≤20. At this cut-off, sensitivity was 81% (95% CI 73% to 87%), specificity 53% (95% CI 50% to 56%), positive predictive value 16% (95% CI 13% to 18%) and negative predictive value 96% (95% CI 95% to 98%) for diagnosing haemodynamically significant CAD. CONCLUSION: Sound-based detection of CAD enables risk stratification superior to clinical risk scores. With a negative predictive value of 96%, this new acoustic rule-out system could potentially supplement clinical assessment to guide decisions on the need for further diagnostic investigation. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov identifier NCT02264717; Results.


Subject(s)
Acoustics/instrumentation , Coronary Artery Disease/diagnosis , Heart Sounds/physiology , Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Stenosis , Female , Humans , Male , Middle Aged , Point-of-Care Systems , Prospective Studies , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...