Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ground Water ; 62(1): 124-139, 2024.
Article in English | MEDLINE | ID: mdl-37246740

ABSTRACT

FloPy is a Python package for creating, running, and post-processing MODFLOW-based groundwater flow and transport models. FloPy functionality has expanded to support the latest version of MODFLOW (MODFLOW 6) including support for unstructured grids. FloPy can simplify the process required to download MODFLOW-based and other executables for Linux, MacOS, and Windows operating systems. Expanded FloPy capabilities include (1) full support for structured and unstructured spatial discretizations; (2) geoprocessing of spatial features and raster data to develop model input for supported discretization types; (3) the addition of functionality to provide direct access to simulated output data; (4) extension of plotting capabilities to unstructured MODFLOW 6 discretization types; and (5) the ability to export model data to shapefiles, NetCDF, and VTK formats for processing, analysis, and visualization by other software products. Examples of using expanded FloPy capabilities are presented for a hypothetical watershed. An unstructured groundwater flow and transport model, with several advanced stress packages, is presented to demonstrate how FloPy can be used to develop complicated unstructured model datasets from original source data (shapefiles and rasters), post-process model results, and plot simulated results.


Subject(s)
Groundwater , Models, Theoretical , Workflow , Water Movements , Software
2.
Ground Water ; 62(1): 157-166, 2024.
Article in English | MEDLINE | ID: mdl-37882370

ABSTRACT

An agricultural water use package has been developed for MODFLOW 6 using the MODFLOW Application Programming Interface (API). The MODFLOW API Agricultural Water Use Package (API-Ag) was based on the approach to simulate irrigation demand in the MODFLOW-NWT and GSFLOW Agricultural Water Use (AG) Package. The API-Ag Package differs from the previous approach by implementing new features and support for additional irrigation providers. New features include representation of deficit and over-irrigation, Multi-Aquifer Well and Lake Package irrigation providers, and support for structured, vertex, and unstructured grid models. Three example problems are presented that demonstrate how the API-Ag Package improves representation of highly managed systems and are further used to validate the irrigation demand and delivery formulations. Irrigation volumes simulated in the three example problems show excellent agreement with the MODFLOW-NWT AG Package.


Subject(s)
Groundwater , Models, Theoretical , Water Movements , Agriculture , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...