Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 33(7): 1221-1228, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35623100

ABSTRACT

Antimicrobial resistance is a serious challenge facing human and veterinary health. Current methods of detecting resistance are limited in turn-around time or universal detection. In this work, a new antimicrobial susceptibility test is developed and validated, which utilizes deuterium labeling of membrane lipids to track the growth of bacterial cells. We hypothesize that deuterium uptake and subsequent labeling of lipids can be detected using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Additionally, bacteria growth is performed on the MALDI target, minimizing sample preparation materials and time. When two Escherichia coli strains are grown in the presence of deuterium oxide, labeling can be detected in as little as 30 min to 2 h. The labeling efficiency, or the ratio of labeled to unlabeled lipid peaks, provides information about the growth rate of bacteria. This growth ratio can differentiate between resistant and susceptible strains of bacteria as a resistant strain will maintain ∼50% labeling efficiency between untreated and treated cultures. In comparison, a susceptible strain will see a decrease in fractional abundance of deuterium from ∼50% in the untreated to ∼10% in the treated. This approach is applied to measure the minimum inhibitory concentration (MIC) of the resistant and susceptible strains from on-target microdroplet culture in a range of antibiotic concentrations. The first antibiotic concentration with a significant decrease in fractional abundance of deuterium correlates well with a traditionally obtained MIC using broth dilution, indicating the clinical relevance of the results.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Anti-Bacterial Agents/pharmacology , Bacteria , Deuterium , Drug Resistance, Bacterial , Humans , Lipids , Microbial Sensitivity Tests , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
2.
Mater Today Adv ; 14: 100228, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35284812

ABSTRACT

The application of antiviral coatings to masks and respirators is a potential mitigating step toward reducing viral transmission during the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. The use of appropriate masks, social distancing, and vaccines is the immediate solution for limiting the viral spread and protecting people from this virus. N95 respirator masks are effective in filtering the virus particles, but they cannot kill or deactivate the virus. We report a possible approach to deactivating SARS-CoV-2 by applying an antimicrobial coating (Goldshield 75) to masks and respirators, rendering them suitable for repeated use. Masks coated with Goldshield 75 demonstrated continuous inactivation of the Alpha and Beta variants of the SARS-CoV-2 over a 3-day period and no loss of inactivation when stored at temperatures at 50 °C.

3.
Vaccine ; 39(29): 3862-3870, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34090702

ABSTRACT

Bacillus anthracis, the causative agent of anthrax, continues to be a prominent biological warfare and bioterrorism threat. Vaccination is likely to remain the most effective and user-friendly public health measure to counter this threat in the foreseeable future. The commercially available AVA BioThrax vaccine has a number of shortcomings where improvement would lead to a more practical and effective vaccine for use in the case of an exposure event. Identification of more effective adjuvants and novel delivery platforms is necessary to improve not only the effectiveness of the anthrax vaccine, but also enhance its shelf stability and ease-of-use. Polyanhydride particles have proven to be an effective platform at adjuvanting the vaccine-associated adaptive immune response as well as enhancing stability of encapsulated antigens. Another class of adjuvants, the STING pathway-targeting cyclic dinucleotides, have proven to be uniquely effective at inducing a beneficial inflammatory response that leads to the rapid induction of high titer antibodies post-vaccination capable of providing protection against bacterial pathogens. In this work, we evaluate the individual contributions of cyclic di-GMP (CDG), polyanhydride nanoparticles, and a combination thereof towards inducing neutralizing antibody (nAb) against the secreted protective antigen (PA) from B. anthracis. Our results show that the combination nanovaccine elicited rapid, high titer, and neutralizing IgG anti-PA antibody following single dose immunization that persisted for at least 108 DPI.


Subject(s)
Anthrax Vaccines , Anthrax , Bacillus anthracis , Bacterial Toxins , Anthrax/prevention & control , Antibodies, Bacterial , Antibodies, Neutralizing , Antigens, Bacterial , Humans , Immunity, Humoral
SELECTION OF CITATIONS
SEARCH DETAIL
...