Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Neurophysiol ; 132(12): 3125-3135, 2021 12.
Article in English | MEDLINE | ID: mdl-34740043

ABSTRACT

OBJECTIVE: Uremic myopathy is a condition seen in end-stage renal disease (ESRD), characterized by muscle weakness and muscle fatigue, in which the pathophysiology is uncertain. The aim of this study was to assess the role of abnormal serum constituents in ESRD patients by relating them to the excitability properties of the tibialis anterior muscle, at rest and during electrically induced muscle activation, by recording muscle velocity recovery cycles (MVRC) and frequency ramp responses. METHODS: Eighteen ESRD patients undergoing hemodialysis were evaluated by blood sample, MVRC, and frequency ramp (before and near the end of dialysis treatment), quantitative electromyography, and nerve conduction studies. Patients were compared to 24 control subjects. RESULTS: In patients, muscle relative refractory period, early supernormality, late supernormality after 5 conditioning stimuli, and latency of the last of 15 and 30 frequency ramp pulses were strongly associated with potassium levels (p < 0.01), showing depolarization before and normalization in the end of hemodialysis. CONCLUSIONS: In ESRD patients, the muscle membrane is depolarized, mainly due to hyperkalemia. SIGNIFICANCE: Since normal muscle fatigue has been attributed to potassium-induced depolarization, it seems likely that this mechanism is also a major cause of the exaggerated muscle fatigue and weakness in ESRD patients.


Subject(s)
Kidney Failure, Chronic/blood , Muscle Contraction/physiology , Muscle, Skeletal/physiopathology , Muscular Diseases/blood , Neural Conduction/physiology , Potassium/blood , Adult , Aged , Electromyography , Female , Humans , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/physiopathology , Kidney Failure, Chronic/therapy , Male , Middle Aged , Muscular Diseases/etiology , Muscular Diseases/physiopathology , Renal Dialysis
2.
Clin Auton Res ; 31(6): 719-727, 2021 12.
Article in English | MEDLINE | ID: mdl-34674068

ABSTRACT

PURPOSE: In neuropathic postural tachycardia syndrome, peripheral sympathetic dysfunction leads to excessive venous blood pooling during orthostasis. Up to 84% of patients report leg pain and weakness in the upright position. To explore possible pathophysiological processes underlying these symptoms, the present study examined muscle excitability depending on body position in patients with neuropathic postural tachycardia syndrome and healthy subjects. METHODS: In ten patients with neuropathic postural tachycardia syndrome and ten healthy subjects, muscle excitability measurements were performed repeatedly: in the supine position, during 10 min of head-up tilt and during 6 min thereafter. Additionally, lower leg circumference was measured and subjective leg pain levels were assessed. RESULTS: In patients with neuropathic postural tachycardia syndrome, muscle excitability was increased in the supine position, decreased progressively during tilt, continued to decrease after being returned to the supine position, and did not completely recover to baseline values after 6 min of supine rest. The reduction in muscle excitability during tilt was paralleled by an increase in lower leg circumference as well as leg pain levels. No such changes were observed in healthy subjects. CONCLUSIONS: This study provides evidence for the occurrence of orthostatic changes in muscle excitability in patients with neuropathic postural tachycardia syndrome and that these may be associated with inadequate perfusion of the lower extremities. Insufficient perfusion as a consequence of blood stasis may cause misery perfusion of the muscles, which could explain the occurrence of orthostatic leg pain in neuropathic postural tachycardia syndrome.


Subject(s)
Postural Orthostatic Tachycardia Syndrome , Heart Rate , Humans , Leg , Muscles , Pain , Postural Orthostatic Tachycardia Syndrome/complications , Tachycardia/complications , Tilt-Table Test
3.
J Vis Exp ; (156)2020 02 19.
Article in English | MEDLINE | ID: mdl-32150167

ABSTRACT

Although conventional nerve conduction studies (NCS) and electromyography (EMG) are suitable for the diagnosis of neuromuscular disorders, they provide limited information about muscle fiber membrane properties and underlying disease mechanisms. Muscle velocity recovery cycles (MVRCs) illustrate how the velocity of a muscle action potential depends on the time after a preceding action potential. MVRCs are closely related to changes in membrane potential that follow an action potential, thereby providing information about muscle fiber membrane properties. MVRCs may be recorded quickly and easily by direct stimulation and recording from multi-fiber bundles in vivo. MVRCs have been helpful in understanding disease mechanisms in several neuromuscular disorders. Studies in patients with channelopathies have demonstrated the different effects of specific ion channel mutations on muscle excitability. MVRCs have been previously tested in patients with neurogenic muscles. In this prior study, muscle relative refraction period (MRRP) was prolonged, and early supernormality (ESN) and late supernormality (LSN) were reduced in patients compared to healthy controls. Thereby, MVRCs can provide in vivo evidence of membrane depolarization in intact human muscle fibers that underlie their reduced excitability. The protocol presented here describes how to record MVRCs and analyze the recordings. MVRCs can serve as a fast, simple, and useful method for revealing disease mechanisms across a broad range of neuromuscular disorders.


Subject(s)
Action Potentials , Electromyography/instrumentation , Membrane Potentials , Muscle Contraction , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Recovery of Function , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...