Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Br J Pharmacol ; 173(5): 925-36, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26699847

ABSTRACT

BACKGROUND AND PURPOSE: The 5-HT transporter (SERT) is a target for antidepressant drugs. SERT possesses two binding sites: the orthosteric (S1) binding site, which is the presumed target for current SERT inhibitors, and an allosteric (S2) site for which potential therapeutic effects are unknown. The antidepressant drug citalopram displays high-affinity S1 binding and low-affinity S2 binding. To elucidate a possible therapeutic role of allosteric inhibition of SERT, a drug that specifically targets the allosteric site is required. The purpose of this study was to find a compound having higher selectivity towards the S2 site. EXPERIMENTAL APPROACH: We performed a systematic structure-activity relationship study based on the scaffold of citalopram and the structurally closely related congener, talopram, which shows low-affinity S1 binding in SERT. The role of the four chemical substituents, which distinguish citalopram from talopram in conferring selectivity towards the S1 and S2 site, respectively, was assessed by determining the binding of 14 citalopram/talopram analogous to the S1 and S2 binding sites in SERT using membranes of COS7 cells transiently expressing SERT. KEY RESULTS: The structure-activity relationship study revealed that dimethyl citalopram possesses the highest affinity for the allosteric site relative to the S1 site in SERT and has approximately twofold selectivity for the allosteric site relative to the S1 site in SERT. CONCLUSIONS AND IMPLICATIONS: The compound could be a useful lead for future synthesis of drugs with high affinity and high selectivity towards the allosteric binding site.


Subject(s)
Allosteric Site , Citalopram/analogs & derivatives , Citalopram/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin Plasma Membrane Transport Proteins/metabolism , Animals , COS Cells , Chlorocebus aethiops , Humans , Mutation , Serotonin Plasma Membrane Transport Proteins/chemistry , Serotonin Plasma Membrane Transport Proteins/genetics , Structure-Activity Relationship
2.
Neuropharmacology ; 60(1): 182-90, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20816875

ABSTRACT

Analogs of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational modeling together with site-directed mutagenesis to characterize the binding site for BZTs in DAT. Docking into molecular models based on the structure of the bacterial homolog LeuT supported a BZT binding site that overlaps with the substrate-binding pocket. In agreement, mutations of residues within the pocket, including(2) Val152(3.46) to Ala or Ile, Ser422(8.60) to Ala and Asn157(3.51) to Cys or Ala, resulted in decreased affinity for BZT and the analog JHW007, as assessed in [(3)H]dopamine uptake inhibition assays and/or [(3)H]CFT competition binding assay. A putative polar interaction of one of the phenyl ring fluorine substituents in JHW007 with Asn157(3.51) was used as a criterion for determining likely binding poses and establish a structural context for the mutagenesis findings. The analysis positioned the other fluorine-substituted phenyl ring of JHW007 in close proximity to Ala479(10.51)/Ala480(10.52) in transmembrane segment (TM) 10. The lack of such an interaction for BZT led to a more tilted orientation, as compared to JHW007, bringing one of the phenyl rings even closer to Ala479(10.51)/Ala480(10.52). Mutation of Ala479(10.51) and Ala480(10.52) to valines supported these predictions with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine.


Subject(s)
Benztropine/pharmacology , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , Animals , Benztropine/metabolism , Binding Sites , COS Cells , Chlorocebus aethiops , Cocaine/metabolism , Cocaine/pharmacology , Dopamine Plasma Membrane Transport Proteins/genetics , Models, Molecular , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL