Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Food ; 5(6): 513-523, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38741004

ABSTRACT

Greenhouse cultivation has been expanding rapidly in recent years, yet little knowledge exists on its global extent and expansion. Using commercial and freely available satellite data combined with artificial intelligence techniques, we present a global assessment of greenhouse cultivation coverage and map 1.3 million hectares of greenhouse infrastructures in 2019, a much larger extent than previously estimated. Our analysis includes both large (61%) and small-scale (39%) greenhouse infrastructures. Examining the temporal development of the 65 largest clusters (>1,500 ha), we show a recent upsurge in greenhouse cultivation in the Global South since the 2000s, including a dramatic increase in China, accounting for 60% of the global coverage. We emphasize the potential of greenhouse infrastructures to enhance food security but raise awareness of the uncertain environmental and social implications that may arise from this expansion. We further highlight the gap in spatio-temporal datasets for supporting future research agendas on this critical topic.


Subject(s)
Agriculture , Agriculture/methods , Satellite Imagery , China , Crops, Agricultural/growth & development , Food Supply , Food Security , Artificial Intelligence/trends , Humans
2.
Sci Total Environ ; 886: 163976, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37160184

ABSTRACT

Rivers and estuaries are regarded as major pathways of microplastic (MP) transport from terrestrial areas to marine ecosystems. Despite this knowledge on the transport dynamics and fate of MP in freshwater riverine and brackish estuarine waters is limited. Via ex situ settling experiments emulating the Msimbazi River and Estuary in Dar es-Salaam, Tanzania, we demonstrate that flocculation and subsequent settling of positively buoyant MP and fine-grained suspended sediment in riverine and estuarine waters are important for the environmental fate of the plastic particles. Our results show that settling velocities of MP and fine-grained sediment in estuarine water were between five and 21 times larger than in freshwater, explained by the increase in ionic strength that occurs when particles enter saline water. This confirms the concept of increased flocculation and settling of fine-grained particles as they are transported from freshwater to estuarine and marine waters. The implication is that land-based sources of small positively buoyant high-density polyethylene (HDPE) MP transported by rivers will tend to settle and accumulate in estuarine environments and thereby lead to a decrease in the overall load of MPs delivered to the wider marine environment. Thereby our results support the notion of estuaries as MP traps and that flocculation explains the trapping of large quantities of MP debris. Based on these findings we recommend that the interaction of MP with fine-grained sediment should be taken into account when transport models of this pollutant are established.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Estuaries , Water Pollutants, Chemical/analysis , Flocculation , Ecosystem , Environmental Monitoring/methods , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...