Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 51: 109672, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37965591

ABSTRACT

Computed tomography-based active surveillance is increasingly used to manage small renal tumors, regardless of patient age. However, there is an unmet need for decreasing radiation exposure while maintaining the necessary accuracy and reproducibility in radiographic measurements, allowing for detecting even minor changes in renal mass size. In this article, we present supplementary data from a multiobserver investigation. We explored the accuracy and reproducibility of low-dose CT (75% dose reduction) compared to normal-dose CT in assessing maximum axial renal tumor diameter. Open-access CT datasets from the 2019 Kidney and Kidney Tumor Segmentation Challenge were used. A web-based platform for assessing observer performance was used by six radiologist observers to obtain and provide data on tumor diameters and accompanying viewing settings, in addition to key images of each measurement and an interactive module for exploring diameter measurements. These data can serve as a baseline and inform future studies investigating and validating lower-dose CT protocols for active surveillance of small renal masses.

2.
Acta Radiol Open ; 11(10): 20584601221132461, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36246457

ABSTRACT

Background: Routine CT scans may increasingly be used to document normal aortic size and to detect incidental abdominal aortic aneurysms. Purpose: To determine whether ultra-low-dose non-contrast CT (ULDNC-CT) can be used instead of the gold standard CT angiography (CTA) for assessment of maximal abdominal aortic diameter. Materials and Methods: This retrospective study included 50 patients who underwent CTA and a normal-dose non-contrast CT for suspected renal artery stenosis. ULDNC-CT datasets were generated from the normal-dose non-contrast CT datasets using a simulation technique. Using the centerline technique, radiology consultants (n = 4) and residents (n = 3) determined maximal abdominal aortic diameter. The limits of agreement with the mean (LOAM) was used to access observer agreement. LOAM represents how much a measurement by a single observer may plausibly deviate from the mean of all observers on the specific subject. Results: Observers completed 1400 measurements encompassing repeated CTA and ULDNC-CT measurements. The mean diameter was 24.0 and 25.0 mm for CTA and ULDNC-CT, respectively, yielding a significant but minor mean difference of 1.0 mm. The 95% LOAM reproducibility was similar for CTA and ULDNC-CT (2.3 vs 2.3 mm). In addition, the 95% LOAM and mean diameters were similar for CTA and ULDNC-CT when observers were grouped as consultants and residents. Conclusions: Ultra-low-dose non-contrast CT exhibited similar accuracy and reproducibility of measurements compared with CTA for assessing maximal abdominal aortic diameter supporting that ULDNC-CT can be used interchangeably with CTA in the lower range of aortic sizes.

3.
MAGMA ; 26(5): 431-42, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23483359

ABSTRACT

OBJECT: Diffusion weighted imaging (DWI) of the liver suffers from low signal to noise making 3 Tesla (3 T) an attractive option, but 3 T data is scarce. It was the aim to study the influence of different b values and respiratory compensation methods (RCM) on the apparent diffusion coefficient (ADC) level and on ADC reproducibility at 3 T. MATERIALS AND METHODS: Ten healthy volunteers and 12 patients with malignant liver lesions underwent repeated (2-22 days) breathhold, free-breathing and respiratory triggered DWI at 3 T using b values between 0 and 1,000 s/mm(2). RESULTS: The ADCs changed up to 150% in healthy livers and up to 48% in malignant lesions depending on b value combinations. Best ADC reproducibility in healthy livers were obtained with respiratory triggering (95% limits of agreement: ±0.12) and free-breathing (±0.14). In malignant lesions equivalent reproducibility was obtained with less RCM dependence. The use of a lower maximum b value (b = 500) decreased reproducibility (±0.14 to ±0.32) in both normal liver and malignant lesions. CONCLUSION: Large differences in absolute ADC values and reproducibility caused by varying combinations of clinically realistic b values were demonstrated. Different RCMs caused smaller differences. Lowering maximum b value to 500 increased limits of agreement up to a factor of two. Serial ADC changes larger than approximately 15% can be detected confidently on an individual basis in both malignant lesions and normal liver parenchyma at 3 T using appropriate b values and respiratory compensation.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Liver/pathology , Respiration , Adult , Aged , Aged, 80 and over , Algorithms , Artifacts , Diffusion , Female , Humans , Male , Middle Aged , Movement , Perfusion , Reproducibility of Results , Signal-To-Noise Ratio , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...