Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 5(7): 2067-2075, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32529825

ABSTRACT

The wide and ever-increasing applications of thermoplasmonics demand the need for sensitive and reliable tools to probe optical absorptions of individual nanoparticles. However, most of the currently available techniques focus only on measuring the surface temperature of nanostructures in a particular medium and are either invasive or suffer from low sensitivity, lengthy calibration, or the inability to probe single structures with nanogaps. Here, we present for the first time the use of micromechanical SiN string resonators for quantifying optical absorption cross sections of individual plasmonic nanostructures. Monomers and dimers of nanospheres, nanostars, shell-isolated nanoparticles, and nanocubes are probed. A reliable data treatment method is developed to obtain the absorption cross sections as a function of responsivity across a string. The presented method exhibits an excellent sensitivity of ∼89 Hz/K. This allows quantification of optical absorption cross sections of individual plasmonic structures even when their plasmon resonance wavelengths are far from the laser excitation wavelength. The experimentally obtained optical absorption cross sections agree well with the simulations. Influencing factors including polarization, surface morphology, and nanogap size are discussed. The developed method and the obtained optical absorption profiles facilitate future development and optimization of thermoplasmonic applications.


Subject(s)
Nanospheres , Nanostructures , Lasers , Light , Surface Plasmon Resonance
2.
Nat Commun ; 11(1): 1235, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32144254

ABSTRACT

Thermal methods are indispensable for the characterization of most materials. However, the existing methods require bulk amounts for analysis and give an averaged response of a material. This can be especially challenging in a biomedical setting, where only very limited amounts of material are initially available. Nano- and microelectromechanical systems (NEMS/MEMS) offer the possibility of conducting thermal analysis on small amounts of materials in the nano-microgram range, but cleanroom fabricated resonators are required. Here, we report the use of single drug and collagen particles as micro mechanical resonators, thereby eliminating the need for cleanroom fabrication. Furthermore, the proposed method reveals additional thermal transitions that are undetected by standard thermal methods and provide the possibility of understanding fundamental changes in the mechanical properties of the materials during thermal cycling. This method is applicable to a variety of different materials and opens the door to fundamental mechanistic insights.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Materials Testing/instrumentation , Micro-Electrical-Mechanical Systems , Collagen/chemistry , Crystallization , Equipment Design , Phase Transition , Theophylline/chemistry
3.
Mol Pharm ; 17(5): 1715-1722, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32207959

ABSTRACT

Quantifying molecular surface diffusivity is of broad interest in many different fields of science and technology. In this study, the method of surface grating decay is utilized to investigate the surface diffusion of practical relevant amorphous solid dispersions of indomethacin and the polymeric excipient Soluplus (a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) at various polymer concentrations (1-20% w/w). The study confirms that measuring surface diffusivity below the system's glass transition temperature is possible with a simplified atomic force microscopy setup. Results highlight a striking polymer influence on the surface diffusivity of drug molecules at low polymer concentrations and a turnover point to a polymer dominated diffusion at around three percent (w/w) polymer concentration. The surface diffusion measurements further correlate well with the observed increase in physical stability of the system as measured by X-ray powder diffraction. These findings are of vital interest in both the applied use and fundamental understanding of amorphous solid dispersions.


Subject(s)
Indomethacin/chemistry , Microscopy, Atomic Force/methods , Polyethylene Glycols/chemistry , Polyvinyls/chemistry , Diffusion , Drug Stability , X-Ray Diffraction
4.
Microsyst Nanoeng ; 5: 58, 2019.
Article in English | MEDLINE | ID: mdl-31646000

ABSTRACT

Thermal analysis is essential for the characterization of polymers and drugs. However, the currently established methods require a large amount of sample. Here, we present pyrolytic carbon resonators as promising tools for micromechanical thermal analysis (MTA) of nanograms of polymers. Doubly clamped pre-stressed beams with a resonance frequency of 233 ± 4 kHz and a quality factor (Q factor) of 800 ± 200 were fabricated. Optimization of the electrical conductivity of the pyrolytic carbon allowed us to explore resistive heating for integrated temperature control. MTA was achieved by monitoring the resonance frequency and quality factor of the carbon resonators with and without a deposited sample as a function of temperature. To prove the potential of pyrolytic carbon resonators as thermal analysis tools, the glass transition temperature (T g) of semicrystalline poly(L-lactic acid) (PLLA) and the melting temperature (T m) of poly(caprolactone) (PCL) were determined. The results show that the T g of PLLA and T m of PCL are 61.0 ± 0.8 °C and 60.0 ± 1.0 °C, respectively, which are in excellent agreement with the values measured by differential scanning calorimetry (DSC).

5.
Sci Rep ; 9(1): 7525, 2019 05 17.
Article in English | MEDLINE | ID: mdl-31101829

ABSTRACT

Crystalline solids can incorporate water molecules into their crystal lattice causing a dramatic impact on their properties. This explains the increasing interest in understanding the dehydration pathways of these solids. However, the classical thermal analytical techniques cannot spatially resolve the dehydration pathway of organic hydrates at the single particle level. We have developed a new method for imaging the dehydration of organic hydrates using Raman line-focus microscopy during heating of a particle. Based on this approach, we propose a new metastable intermediate of theophylline monohydrate during the three-step dehydration process of this system and further, we visualize the complex nature of the three-step dehydration pathway of nitrofurantoin monohydrate to its stable anhydrous form. A Raman line-focus mapping option was applied for fast simultaneous mapping of differently sized and shaped particles of nitrofurantoin monohydrate, revealing the appearance of multiple solid-state forms and the non-uniformity of this particle system during the complex dehydration process. This method provides an in-depth understanding of phase transformations and can be used to explain practical industrial challenges related to variations in the quality of particulate materials.

6.
Nano Lett ; 14(5): 2318-21, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24697597

ABSTRACT

We demonstrate the direct photothermal probing and mapping of single plasmonic nanostructures via the temperature-induced detuning of nanomechanical string resonators. Single Au nanoslits and nanorods are illuminated with a partially polarized focused laser beam (λ = 633 nm) with irradiances in the range of 0.26-38 µW/µm(2). Photothermal heating maps with a resolution of ∼375 nm are obtained by scanning the laser over the nanostructures. Based on the string sensitivities, absorption efficiencies of 2.3 ± 0.3 and 1.1 ± 0.7 are extracted for a single nanoslit (53 nm × 1 µm) and nanorod (75 nm × 185 nm). Our results show that nanomechanical resonators are a unique and robust analysis tool for the low-power investigation of thermoplasmonic effects in plasmonic hot spots.

SELECTION OF CITATIONS
SEARCH DETAIL
...