Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Ecol Evol ; 14(7): e11703, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962024

ABSTRACT

Parturition timing has long been a topic of interest in ungulate research. However, few studies have examined parturition timing at fine scale (e.g., <1 day). Predator activity and environmental conditions can vary considerably with diel timing, which may result in selective pressure for parturition to occur during diel times that maximize the likelihood of neonate survival. We monitored parturition events and early-life survival of elk (Cervus canadensis) and mule deer (Odocoileus hemionus) in Utah, USA to better understand diel timing of parturition in temperate ungulates. Diel timing of parturition was moderately synchronous among conspecifics and influenced by environmental variables on the date of parturition. For elk, parturition events were most common during the morning crepuscular period and generally occurred later (i.e., closer to 12:00) when a relatively large proportion of the moon was illuminated. For mule deer, parturition events were most common during the diurnal period and generally occurred later (i.e., closer to 15:00) on cold, wet dates. Diel timing of parturition did not influence neonate survival, but larger datasets may be required to verify the apparent lack of influence. Although additional work could evaluate alternative variables that might affect parturition timing, our data provide an improved and finer scale understanding of reproductive ecology and phenology in ungulates.

2.
Mov Ecol ; 12(1): 6, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243279

ABSTRACT

BACKGROUND: Information on reproduction of harvested species such as mule deer (Odocoileus hemionus) is vital for conservation and management. Furthermore, parturition in ungulates may be detected using patterns of movement logged by GPS transmitters. Several movement-based methods have been developed to detect parturition in ungulates including the Peterson method, behavioral change point analysis (BCPA), rolling minimum convex polygons (rMCP), individual-based method (IBM), and population-based method (PBM). Our objectives were to (1) test the accuracy and the precision of each previously described method and (2) develop an improved method optimized for mule deer that incorporated aspects of the other methods. METHODS: We determined parturition timing and status for female mule deer fitted with GPS collars and implanted with vaginal implant transmitters (VITs). We used movement patterns before and after parturition to set movement thresholds for each movement-based method. Following model training, we used location and birth date data from an external dataset to test the effectiveness of each movement-based method. Additionally, we developed a novel method for detecting parturition called the analysis of parturition indicators (API). We used two regression analyses to determine the accuracy and precision of estimates generated by each method. RESULTS: The six methods we employed varied in accuracy, with the API, rMCP, and BCPA being most accurate. Precision also varied among methods, with the API, rMCP, and PBM generating the most precise estimates of parturition dates. The API and the rMCP performed similarly and better overall than any of the other existing methods. CONCLUSIONS: We found that movement-based methods could be used to accurately and precisely detect parturition in mule deer. Further, we determined that the API and rMCP methods had the greatest overall success at detecting parturition in mule deer. The relative success of the API and rMCP may be attributed to the fact that both methods use home range size to detect parturition and are validated using known parturition dates of collared deer. We present the API as an efficient method of estimating birth status and timing of parturition of mule deer fitted with GPS transmitters, as well as affirm the effectiveness of a previously developed method, rMCP.

3.
Biochemistry ; 63(1): 116-127, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38127721

ABSTRACT

FixL is an oxygen-sensing heme-PAS protein that regulates nitrogen fixation in the root nodules of plants. In this paper, we present the first photothermal studies of the full-length wild-type FixL protein from Sinorhizobium meliloti and the first thermodynamic profile of a full-length heme-PAS protein. Photoacoustic calorimetry studies reveal a quadriphasic relaxation for SmFixL*WT and the five variant proteins (SmFixL*R200H, SmFixL*R200Q, SmFixL*R200E, SmFixL*R200A, and SmFixL*I209M) with four intermediates from <20 ns to ∼1.5 µs associated with the photodissociation of CO from the heme. The altered thermodynamic profiles of the full-length SmFixL* variant proteins confirm that the conserved heme domain residues R200 and I209 are important for signal transduction. In contrast, the truncated heme domain, SmFixLH128-264, shows only a single, fast monophasic relaxation at <50 ns associated with the fast disruption of a salt bridge and release of CO to the solvent, suggesting that the full-length protein is necessary to observe the conformational changes that propagate the signal from the heme domain to the kinase domain.


Subject(s)
Hemeproteins , Sinorhizobium meliloti , Protein Kinases/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Sinorhizobium meliloti/chemistry , Heme/chemistry , Ligands , Hemeproteins/metabolism , Oxygen/metabolism , Calorimetry , Bacterial Proteins/chemistry
4.
PLoS One ; 18(7): e0284565, 2023.
Article in English | MEDLINE | ID: mdl-37506085

ABSTRACT

Age of individuals is an intrinsic demographic parameter used in the modeling and management of wildlife. Although analysis of cementum annuli from teeth is currently the most accurate method used to age ungulates, the age of live ungulates in the field can be estimated by examining tooth wear and tooth replacement patterns. However, there may be limitations to aging based on tooth wear as the rate of tooth wear likely varies among individuals due to factors such as age, diet, environment, and sex. Our objective was to determine the reliability of estimating age for mule deer based on tooth wear and tooth replacement patterns. We compared ages estimated by tooth wear (collected at time of capture for a statewide monitoring effort) to ages determined from cementum analysis (from teeth collected after mortalities of radio-tracked animals from the monitoring effort). Accuracy was high; ages estimated from tooth wear were within one year of cementum ages >75% of the time when aged by experienced observers. Bias in accuracy for estimates of age was low but slightly biased toward underestimation (i.e., 0.6 years on average)-especially as cementum age increased. Our results indicate that aging mule deer using patterns in tooth wear can be reliable if observers estimating age have experience using this method.


Subject(s)
Deer , Tooth Attrition , Tooth , Animals , Reproducibility of Results , Tooth Attrition/veterinary , Equidae
5.
Dalton Trans ; 51(33): 12729-12735, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35946557

ABSTRACT

Porphyrins and phthalocyanines are ideal candidates for the development of photoactive porous metal organic frameworks (MOFs) due to their broad absorption spectra in the visible and near UV regions, high molar extinction coefficients and long triplet state lifetimes. An important factor in the development of porphyrin/phthalocyanine based MOFs is the extent to which the pore modulates the photophysical properties of the guest. Here, two structurally related guests, Zn(II)tetra(4-sulfonatophenyl)porphyrin (Zn4SP) and Zn(II)phthalocyanine tetrasulfonate (ZnPcS4) have been encapsulated within the pores of the MOF HKUST-1(Zn). Both the ZnPcS4@HKUST-1(Zn) and Zn4SP@HKUST-1(Zn) display bathochromic shifts in the Soret absorption band and steady state emission spectra as well as biphasic emissions lifetimes, relative to the chromophores in solution. These results are consistent with the pore modulating the excited state conformations of both chromophores. Interestingly, rotational control of the phenyl groups associated with Zn4SP@HKUST-1(Zn) appears to have a moderate impact on the photophysics.

6.
J Wildl Dis ; 58(1): 168-182, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34818408

ABSTRACT

Netgun capture is a commonly used capture method for mule deer (Odocoileus hemionus) in North America. Mortalities during netgun captures are generally low, and most often caused by direct trauma and occasionally fatal capture myopathy. Capture is a stressful event for a wild animal, and subclinical capture myopathy is difficult to measure. The use of tranquilizers during netgun capture is not widespread. We compared physiologic variables from 250 netgun-captured deer (57 males and 193 females) that did or did not receive midazolam and azaperone (mean, 0.14 mg/kg; SD, 0.02 mg/kg; range, 0.08-0.21 mg/kg) at time of capture and before transporting to a processing location, with the goal of evaluating whether drug administration would improve or worsen the physiologic state of the animal. Deer were captured in association with management activities between December 2018 and March 2020, with 132 deer receiving midazolam and azaperone at time of capture. Variables recorded included chase times, time from capture to arrival at the processing location, time from capture to release, serial rectal temperatures, heart rates, respiratory rates, body condition, age, sex, O2 administration, creatine kinase, aspartate aminotransferase, packed cell volume, red blood cell concentration, and hemoglobin, as well as serial venous pH, pCO2, HCO3-, and base excess. All animals were collared with GPS tracking devices and monitored after release. There was no difference in survival after capture between deer that did or did not receive midazolam and azaperone. All animals experienced severe metabolic lactic acidosis, which generally worsened with increasing chase time, highlighting the critical importance of limiting chase times during captures. Drug administration did not influence the degree of metabolic acidosis; however, it appeared to have a favorable effect on several stress-related indices, including rectal temperature, heart rate, respiratory rate, and packed cell volume.


Subject(s)
Azaperone , Deer , Animals , Azaperone/pharmacology , Electron Spin Resonance Spectroscopy/veterinary , Equidae , Female , Male , Midazolam/pharmacology
7.
Mov Ecol ; 9(1): 44, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34446100

ABSTRACT

BACKGROUND: Conservation and management of migratory animals has gained attention in recent years, but the majority of research has focused on stereotypical 'migrant' and 'resident' behaviors, often failing to incorporate any atypical behaviors or characterize migratory behaviors beyond distance and timing of the migration. With migration threatened by anthropogenic development and climate change, it is crucial that we understand the full range of migratory behaviors. Our objective was to demonstrate and characterize the variation in migration strategies, including typical and atypical migratory behaviors for mule deer (Odocoileus hemionus) in Utah, USA. METHODS: Because calculation of common metrics such as distance, timing, and use of stopovers during migration did not adequately describe the variation we observed in migratory behavior for this species-particularly when animals visited multiple (> 3) ranges for extended lengths of time-we developed additional methods and categories to describe observed variation in migratory behavior. We first categorized trajectories based on the number of discrete, separate ranges and range shifts between them. Then, we further characterized the variation in migration strategies by examining the timing, duration, and distance traveled within each of the categories. We also examined if and how frequently individual deer switched among categories from year to year. RESULTS: We classified 1218 movement trajectories from 722 adult female mule deer, and found that 54.4% were dual-range migrants, who made one round-trip to one distinct range. Multi-range migrants (23.6%) made one round-trip during which they stayed at multiple discrete ranges. Commuters (1.0%) traveled to the same range multiple times, and poly migrants (1.5%) made multiple round-trips to different ranges. Gradual movers (2.5%) did not show a discrete range shift but moved gradually between ranges, whereas residents (12.6%) never left their home ranges, and dispersers (4.4%) left but never returned. Of the deer that we monitored for multiple years, 51.2% switched among categories. CONCLUSION: We conclude that the substantial number of atypical migratory strategies, as well as the number of deer that switched categories, underlines the importance of studying these less-stereotyped behaviors that may be exhibited by large proportions of populations. Acknowledging and investigating the full complexity and diversity in migratory strategies might uncover unknowns with respect to underlying factors and drivers of migration, and can help shape effective conservation strategies.

8.
BMC Vet Res ; 17(1): 258, 2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34325697

ABSTRACT

BACKGROUND: Mule deer rely on fat and protein stored prior to the winter season as an energy source during the winter months when other food sources are sparse. Since associated microorganisms ('microbiota') play a significant role in nutrient metabolism of their hosts, we predicted that variation in the microbiota might be associated with nutrient storage and overwintering in mule deer populations. To test this hypothesis we performed a 16S rRNA marker gene survey of fecal samples from two deer populations in the western United States before and after onset of winter. RESULTS: PERMANOVA analysis revealed the deer microbiota varied interactively with geography and season. Further, using metadata collected at the time of sampling, we were able to identify different fecal bacterial taxa that could potentially act as bioindicators of mule deer health outcomes. First, we identified the abundance of Collinsella (family: Coriobacteriaceae) reads as a possible predictor of poor overwintering outcomes for deer herds in multiple locations. Second, we showed that reads assigned to the Bacteroides and Mollicutes Order RF39 were both positively correlated with deer protein levels, leading to the idea that these sequences might be useful in predicting mule deer protein storage. CONCLUSIONS: These analyses confirm that variation in the microbiota is associated with season-dependent health outcomes in mule deer, which may have useful implications for herd management strategies.


Subject(s)
Bacteria/classification , Deer/microbiology , Feces/microbiology , Animals , Gastrointestinal Microbiome , Population Surveillance , Seasons
9.
Chem Soc Rev ; 50(7): 4382-4410, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33594994

ABSTRACT

In this review, the dependence of the photophysical response of chromophores in the confined environments associated with crystalline scaffolds, such as metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and molecular cages, has been carefully evaluated. Tunability of the framework aperture, cavity microenvironment, and scaffold topology significantly affects emission profiles, quantum yields, or fluorescence lifetimes of confined chromophores. In addition to the role of the host and its effect on the guest, the methods for integration of a chromophore (e.g., as a framework backbone, capping linker, ligand side group, or guest) are discussed. The overall potential of chromophore-integrated frameworks for a wide-range of applications, including artificial biomimetic systems, white-light emitting diodes, photoresponsive devices, and fluorescent sensors with unparalleled spatial resolution are highlighted throughout the review.

10.
GigaByte ; 2021: gigabyte34, 2021.
Article in English | MEDLINE | ID: mdl-36824347

ABSTRACT

The mule deer (Odocoileus hemionus) is an ungulate species that is distributed in a range from western Canada to central Mexico. Mule deer are an essential source of food for many predators, are relatively abundant, and commonly make broad migration movements. A clearer understanding of the mule deer genome can improve our knowledge of its population genetics, movements, and demographic history, aiding in conservation efforts. Their large population size, continuous distribution, and diversity of habitat make mule deer excellent candidates for population genomics studies; however, few genomic resources are currently available for this species. Here, we sequence and assemble the mule deer genome into a highly contiguous chromosome-length assembly for use in future research using long-read sequencing and Hi-C technologies. We also provide a genome annotation and compare demographic histories of the mule deer and white-tailed deer using the pairwise sequentially Markovian coalescent model. We expect this assembly to be a valuable resource in the continued study and conservation of mule deer.

11.
Dev Psychol ; 57(1): 126-138, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33382328

ABSTRACT

A well-documented finding in aging and emotion research is that older adults reliably report less negative and, often, more positive affect than younger adults. How older people accomplish this is, however, an open question. We propose that this age effect is the result of differential use of emotion regulation strategies, especially when affective states call for them. We assessed a wide range of emotion regulation strategies over 2 months of daily life (60 consecutive days, N = 9,089 observations). Sample was composed of N = 153 participants (52% female; 62.09% White, 19.61% Black or African American, 9.80% Asian,1.96% Hispanic or Latino, 1.31% Native American, and 5.23% were missing cases) ranging in age from 18 to 84 years, (M = 45, SD = 20.02). We compare three age groups: young (n = 50, college students, median age of 21 years), middle aged (n = 52, university graduates, median age 44 years), and older (n = 51, university graduates, median age of 68 years). Using mixed model analyses of mood regulation strategy use, we find a main effect for age, negative affect (NA), and an interaction between NA and age, meaning that, in general, older participants' use of emotion regulation strategy was higher with negative affect than for younger participants. In summary, older participants used a wider variety of emotion regulation strategies, and they used them most when their affective states called for them, compared to younger participants. Results are interpreted along the lines of an "older but wiser" perspective on emotional well-being and aging. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Subject(s)
Emotional Regulation , Adolescent , Adult , Affect , Aged , Aged, 80 and over , Aging , Ecological Momentary Assessment , Emotions , Female , Humans , Male , Middle Aged , Young Adult
12.
Ecol Evol ; 10(23): 13451-13463, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304551

ABSTRACT

Mapping suitable habitat is an important process in wildlife conservation planning. Species distribution reflects habitat selection processes occurring across multiple spatio-temporal scales. Because habitat selection may be driven by different factors at different scales, conservation planners require information at the scale of the intervention to plan effective management actions. Previous research has described habitat selection processes shaping the distribution of greater sage-grouse (Centrocercus urophasianus; sage-grouse) at the range-wide scale. Finer-scale information for applications within jurisdictional units inside the species range is lacking, yet necessary, because state wildlife agencies are the management authority for sage-grouse in the United States. We quantified seasonal second-order habitat selection for sage-grouse across the state of Utah to produce spatio-temporal predictions of their distribution at the southern periphery of the species range. We used location data obtained from sage-grouse marked with very-high-frequency radio-transmitters and lek location data collected between 1998 and 2013 to quantify species habitat selection in relation to a suite of topographic, edaphic, climatic, and anthropogenic variables using random forest algorithms. Sage-grouse selected for greater sagebrush (Artemisia spp.) cover, higher elevations, and gentler slopes and avoided lower precipitations and higher temperatures. The strength of responses to habitat variables varied across seasons. Anthropogenic variables previously reported as affecting their range-wide distribution (i.e., roads, powerlines, communication towers, and agricultural development) were not ranked as top predictors at our focal scale. Other than strong selection for sagebrush cover, the responses we observed differed from what has been reported at the range-wide scale. These differences likely reflect the unique climatic, geographic, and topographic context found in the southern peripheral area of the species distribution compared to range-wide environmental gradients. Our results highlight the importance of considering appropriateness of scale when planning conservation actions for wide-ranging species.

13.
Ecol Evol ; 10(20): 11169-11182, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33144957

ABSTRACT

The "green wave" hypothesis posits that during spring consumers track spatial gradients in emergent vegetation and associated foraging opportunities. This idea has largely been invoked to explain animal migration patterns, yet the general phenomenon underlies trends in vertebrate reproductive chronology as well. We evaluated the utility of this hypothesis for predicting spatial variation in nest initiation of greater sage-grouse (Centrocerus urophasianus), a species of conservation concern in western North America. We used the Normalized Difference Vegetation Index (NDVI) to map the green wave across elevation and then compiled dates and locations of >450 sage-grouse nests from 20 study sites (2000-2014) to model nest initiation as a function of the start of the growing season (SOS), defined here as the maximum daily rate of increase in NDVI. Individual sites were drawn from three ecoregions, distributed over 4.5° latitude, and spanning 2,300 m in elevation, which captured the climatic, edaphic, and floristic diversity of sagebrush ecosystems in the southern half of current sage-grouse range. As predicted, SOS displayed a significant, positive relationship with elevation, occurring 1.3 days later for each 100 m increase in elevation. In turn, sage-grouse nest initiation followed SOS by 22 ± 10 days (r2  = .57), with hatch dates falling on or just prior to the peak of the growing season. By timing nesting to the green wave, sage-grouse chicks hatched when the abundance of protein-rich invertebrate biomass is hypothesized to be nearing a seasonal high. This adaptation likely represents a strategy for maximizing reproductive success in the arid, variable environments that define sagebrush ecosystems. Given projected changes in climate and land use, these results can be used to predict periods of relative sensitivity to habitat disturbance for sage-grouse. Moreover, the near real-time availability of satellite imagery offers a heretofore underutilized means of mapping the green wave, planning habitat restoration, and monitoring range conditions.

14.
PLoS One ; 15(11): e0242841, 2020.
Article in English | MEDLINE | ID: mdl-33227036

ABSTRACT

Pressure from hunting can alter the behavior and habitat selection of game species. During hunting periods, cervids such as elk (Cervus canadensis) typically select for areas further from roads and closer to tree cover, while altering the timing of their daily activities to avoid hunters. Our objective was to determine the habitat characteristics most influential in predicting harvest risk of elk. We captured 373 female elk between January 2015 and March 2017 in the Uinta-Wasatch-Cache National Forest and surrounding area of central Utah, USA. We determined habitat selection during the hunting season using a resource selection function (RSF) for 255 adult cow elk. Additionally, we used a generalized linear mixed model to evaluate risk of harvest based on habitat use within home ranges (3rd order selection) as well as the location of the home range on the landscape to evaluate vulnerability on a broader scale. Female elk selected for areas that reduced hunter access (rugged terrain, within tree cover, on private land). Age, elevation and distance to roads within a home range were most influential in predicting harvest risk (top model accounted for 36.2% of AIC weight). Elevation and distance to trees were most influential in predicting risk when evaluating the location of the home range (top model accounted for 42.1% of AIC weight). Vulnerability to harvest was associated with proximity to roads. Additionally, survival in our landscape decreased with age of femaleelk.


Subject(s)
Deer/physiology , Ecosystem , Homing Behavior/physiology , Animals , Cattle , Female , Seasons , Trees , Utah
15.
Dalton Trans ; 49(33): 11668-11674, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32785349

ABSTRACT

Porphyrin based metal organic frameworks (MOFs) have provided a broad platform through which a wide variety of light harvesting applications have been developed. Of particular interest within light harvesting MOFs containing porphyrin chromophores is the extent to which the both environment of the porphyrin and the porphyrin conformation modulate the photophysical properties. With this in mind, a new MOF (RWLAA-1) has been synthesized based on zinc cations linked by zinc(ii) tetra(4-pyridyl)porphyrin (ZnTPyP) and benzene tricarboxylate (H3BTC) linkers in which the porphyrin exhibits significant conformational distortions that have a profound effect on the photophysics of the material including bathochromic shifts in both the optical (Soret and visible bands) and emission bands, reduction in the energy separation between the Q(0,0) and Q(0,1) emission bands and shorter singlet and triplet state lifetimes. These effects are consistent with the porphyrin deformation resulting in changes in the porphyrin electronic structure and excited state conformational dynamics that alter the vibronic coupling between the excited states (S1 and T1) and the S0 ground state.

16.
Inorg Chem ; 59(11): 7761-7767, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32421317

ABSTRACT

The Os(II) tris(2,2'-bipyridine) (OsBpy) complex exhibits optical properties that are particularly attractive for light harvesting systems due to the broad absorption spectrum extending throughout the solar spectrum. However, the relatively short lifetime of the triplet metal to ligand charge transfer state (3MLCT) relative to the related Ru(II)tris(2,2'-bipyridine) (RuBpy) has limited applications. Here, the encapsulation of OsBpy within two distinct Zn(II)-trimesic acid MOFs, HKUST-1(Zn) and USF-2 is demonstrated in an effort to extend the 3MLCT lifetime. Encapsulation results in a hypsochromatic shift of the steady-state emission band in both frameworks resulting from a destabilization of the 3MLCT. The encapsulated OsBpy also exhibits extended emission lifetimes in both HKUST-1(Zn) (104 ns in MOF vs 50 ns in methanol) and USF-2 (81 ns in MOF vs 50 ns in methanol) arising from changes in the nonradiative decay constants in both systems. The data are also consistent with vibronic perturbations involved in mixing between higher energy 3MLCT* and ligand field states.

17.
PLoS One ; 15(5): e0232492, 2020.
Article in English | MEDLINE | ID: mdl-32413032

ABSTRACT

Coyotes (Canis latrans) and kit foxes (Vulpes macrotis) are desert canids that share ecological similarities, but have disparate histories with anthropogenic pressure that may influence their responses towards novel stimuli. We used remote cameras to investigate response to novel stimuli for these two species. We predicted that coyotes (heavily pressured species) would be more wary towards novel stimuli on unprotected land (canid harvest activities are permitted) than in protected areas (canid harvest activities are not permitted), whereas kit foxes (less pressured species) would exhibit no difference. We examined differences in the investigative behaviors at 660 scent stations in both protected and unprotected areas. Coyotes showed no differences between protected and unprotected land and were generally more wary than kit foxes, supporting our prediction. Kit foxes were more investigative on protected land, contrary to our expectations. Our study provides evidence that anthropogenic pressure can alter the behaviors of wildlife species.


Subject(s)
Behavior, Animal/physiology , Coyotes/physiology , Foxes/physiology , Animals , Animals, Wild/physiology , Desert Climate , Endangered Species , Exploratory Behavior/physiology , Odorants , Pheromones/physiology , Photography , Remote Sensing Technology , Species Specificity , Utah
18.
BMC Ecol ; 20(1): 6, 2020 02 03.
Article in English | MEDLINE | ID: mdl-32013942

ABSTRACT

BACKGROUND: Assessing wildlife movements and habitat use is important for species conservation and management and can be informative for understanding population dynamics. The African buffalo (Syncerus caffer) population of Ruaha National Park, Tanzania has been declining, and little was known about the movement, habitat selection, and space use of the population, which is important for understanding possible reasons behind the decline. A total of 12 African buffalo cows from four different herds were collared with satellite transmitters. Movements were assessed over 2 years from 11 animals. RESULTS: The space use of the individual collared buffaloes as an approximation of the 95% home range size estimated using Brownian bridge models, ranged from 73 to 601 km2. The estimated home ranges were larger in the wet season than in the dry season. With the exception of one buffalo all collared animals completed a wet season migration of varying distances. A consistent pattern of seasonal movement was observed with one herd, whereas the other herds did not behave the same way in the two wet seasons that they were tracked. Herd splitting and herd switching occurred on multiple occasions. Buffaloes strongly associated with habitats near the Great Ruaha River in the dry season and had little association to permanent water sources in the wet season. Daily movements averaged 4.6 km (standard deviation, SD = 2.6 km), with the longest distances traveled during November (mean 6.9 km, SD = 3.6 km) at the end of the dry season and beginning of the wet season. The shortest daily distances traveled occurred in the wet season in April-June (mean 3.6 km, SD = 1.6-1.8 km). CONCLUSION: The Great Ruaha River has experienced significant drying in the last decades due to water diversions upstream, which likely has reduced the suitable range for buffaloes. The loss of dry season habitat due to water scarcity has likely contributed to the population decline of the Ruaha buffaloes.


Subject(s)
Buffaloes , Parks, Recreational , Animals , Cattle , Ecosystem , Female , Seasons , Tanzania
19.
20.
PLoS One ; 14(1): e0209968, 2019.
Article in English | MEDLINE | ID: mdl-30699130

ABSTRACT

Anthropogenic infrastructure can negatively affect wildlife through direct mortality and/or displacement behaviors. Some tetranoids (grouse spp.) species are particularly vulnerable to tall anthropogenic structures because they evolved in ecosystems void of vertical structures. In western North America, electric power transmission and distribution lines (power lines) occur in sagebrush (Artemisia spp.) landscapes within the range of the greater sage-grouse (Centrocercus urophasianus; sage-grouse). The U.S. Fish and Wildlife Service recommended using buffer zones near leks to mitigate the potential impacts of power lines on sage-grouse. However, recommended buffer distances are inconsistent across state and federal agencies because data are lacking. To address this, we evaluated the effects of power lines on sage-grouse breeding ecology within Utah, portions of southeastern Idaho, and southwestern Wyoming from 1998-2013. Overall, power lines negatively affected lek trends up to a distance of 2.7 and 2.8 km, respectively. Power lines died not affect lek persistence. Female sage-grouse avoided transmission lines during the nesting and brooding seasons at distances up to 1.1 and 0.8 km, respectively. Nest and brood success were negatively affected by transmission lines up to distances of 2.6 and 1.1 km, respectively. Distribution lines did not appear to affect sage-grouse habitat selection or reproductive fitness. Our analyses demonstrated the value of sagebrush cover in mitigating potential power line impacts. Managers can minimize the effects of new transmission power lines by placing them in existing anthropogenic corridors and/or incorporating buffers at least 2.8 km from active leks. Given the uncertainty we observed in our analyses regarding sage-grouse response to distribution lines coupled with their role in providing electric power service directly to individual consumers, we recommend that buffers for these power lines be considered on a case-by-case basis. Micrositing to avoid important habitats and habitat reclamation may reduce the potential impacts of new power line construction.


Subject(s)
Animals, Wild/physiology , Conservation of Natural Resources , Electric Power Supplies/adverse effects , Electricity/adverse effects , Galliformes/physiology , Animals , Breeding , Conservation of Natural Resources/methods , Ecosystem , Electric Wiring/adverse effects , Idaho , Nesting Behavior , Population Dynamics , Utah , Wyoming
SELECTION OF CITATIONS
SEARCH DETAIL
...