Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 92020 12 15.
Article in English | MEDLINE | ID: mdl-33320088

ABSTRACT

To maintain energy homeostasis during cold exposure, the increased energy demands of thermogenesis must be counterbalanced by increased energy intake. To investigate the neurobiological mechanisms underlying this cold-induced hyperphagia, we asked whether agouti-related peptide (AgRP) neurons are activated when animals are placed in a cold environment and, if so, whether this response is required for the associated hyperphagia. We report that AgRP neuron activation occurs rapidly upon acute cold exposure, as do increases of both energy expenditure and energy intake, suggesting the mere perception of cold is sufficient to engage each of these responses. We further report that silencing of AgRP neurons selectively blocks the effect of cold exposure to increase food intake but has no effect on energy expenditure. Together, these findings establish a physiologically important role for AgRP neurons in the hyperphagic response to cold exposure.


Subject(s)
Agouti-Related Protein/metabolism , Cold Temperature , Feeding Behavior/physiology , Hyperphagia/physiopathology , Thermogenesis/physiology , Animals , Eating/physiology , Homeostasis/physiology , Male , Mice , Neurons/physiology
2.
Endocrinology ; 158(10): 3259-3268, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28531316

ABSTRACT

Vasomotor symptoms (VMS; or hot flashes) plague millions of reproductive-aged men and women who have natural or iatrogenic loss of sex steroid production. Many affected individuals are left without treatment options because of contraindications to hormone replacement therapy and the lack of equally effective nonhormonal alternatives. Moreover, development of safer, more effective therapies has been stymied by the lack of an animal model that recapitulates the hot-flash phenomenon and enables direct testing of hypotheses regarding the pathophysiology underlying hot flashes. To address these problems, we developed a murine model for hot flashes and a comprehensive method for measuring autonomic and behavioral thermoregulation in mice. We designed and constructed an instrument called a thermocline that produces a thermal gradient along which mice behaviorally adapt to a thermal challenge to their core body temperature set point while their thermal preference over time is tracked and recorded. We tested and validated this murine model for VMS by administration of a TRPV1 agonist and a neurokinin B receptor agonist, capsaicin and senktide, respectively, to unrestrained mice and observed their autonomic and behavioral responses. Following both treatments, the mice exhibited a VMS-like response characterized by a drop in core body temperature and cold-seeking behavior on the thermocline. Senktide also caused a rise in tail skin temperature and increased Fos expression in the median preoptic area, a hypothalamic temperature control center. This dynamic model may be used to fully explore the cellular and molecular bases for VMS and to develop and test new therapeutic options.


Subject(s)
Adaptation, Physiological/physiology , Hot Flashes/chemically induced , Hot Flashes/physiopathology , Peptide Fragments/pharmacology , Receptors, Neurokinin-3/agonists , Receptors, Neurokinin-3/physiology , Substance P/analogs & derivatives , Animals , Behavior, Animal/physiology , Body Temperature , Capsaicin/pharmacology , Disease Models, Animal , Female , Hot Temperature , Male , Mice , Mice, Inbred C57BL , Preoptic Area/chemistry , Preoptic Area/physiopathology , Proto-Oncogene Proteins c-fos/analysis , Skin Temperature , Substance P/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...