Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(44): 17673-17681, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36270053

ABSTRACT

The atomic and magnetic structures of Mn(Co,Ge)2 are reported herein. The system crystallizes in the space group P63/mmc as a superstructure of the MgZn2-type structure. The system exhibits two magnetic transitions with associated magnetic structures, a ferromagnetic (FM) structure around room temperature, and an incommensurate structure at lower temperatures. The FM structure, occurring between 193 and 329 K, is found to be a member of the magnetic space group P63/mm'c'. The incommensurate structure found below 193 K is helical with propagation vector k = (0 0 0.0483). Crystallographic results are corroborated by magnetic measurements and ab initio calculations.

2.
Acta Crystallogr C Struct Chem ; 77(Pt 4): 176-180, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33818439

ABSTRACT

We report two new variants of the X-phase (orthorhombic, space group Pnnm) derived from the Mn-Co-Ge system. Two compositionally related crystals were investigated by means of single-crystal X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The Mn14.9Co15.5Ge6.6 and Mn14Co16.2Ge6.8 intermetallic compounds are part of the homogeneity region of the X-phase and adopt the Mn14(Mn0.11Co0.64Si0.25)23 structure type. The composition obtained from refinement of the XRD data is in agreement with the EDS results. In the present study, chemical disorder was only detected on the 8h positions. The ordering is compared with other members of the X-phase family and shows that the degree of disordering depends on the chemical composition. No completely ordered variants of the X-phase have yet been reported.

3.
J Synchrotron Radiat ; 25(Pt 3): 915-917, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29714205

ABSTRACT

Commissioning results of a liquid sample cell for X-ray reflectivity studies with an in situ applied electrical field are presented. The cell consists of a Plexiglas container with lateral Kapton windows for air-liquid and liquid-liquid interface studies, and was constructed with grooves to accept plate electrodes on the walls parallel to the direction of the beam. Both copper and ITO plate electrodes have been used, the latter being useful for simultaneous optical studies. Commissioning tests were made at the I07 beamline of the Diamond Light Source.

SELECTION OF CITATIONS
SEARCH DETAIL
...