Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Int J Pharm ; : 124436, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977165

ABSTRACT

Biotherapeutics is the fastest growing class of drugs administered by subcutaneous injection. In vitro release testing mimicking physiological conditions at the injection site may guide formulation development and improve biopredictive capabilities. Here, anin vitrorelease cartridge (IVR cartridge) comprising a porous agarose matrix emulating subcutaneous tissue was explored. The objective was to assess effects of medium composition and incorporation of human serum albumin into the matrix. Drug disappearance was assessed for solution, suspension and in situ precipitating insulin products (Actrapid, Levemir, Tresiba, Mixtard 30, Insulatard, Lantus) using the flow-based cartridge. UV-Vis imaging and light microscopy visualized dissolution, precipitation and albumin binding phenomena at the injection site. Divalent cations present in the release medium resulted in slower insulin disappearance for suspension-based and in situ precipitating insulins. Albumin-binding acylated insulin analogs exhibited rapid disappearance from the cartridge; however, sustained retention was achieved by coupling albumin to the matrix. An in vitro-in vivorelation was established for the non-albumin-binding insulins.The IVR cartridge is flexible with potential in formulation development as shown by the ability to accommodate solutions, suspensions, and in situ forming formulations while tailoring of the system to probe in vivo relevant medium effects and tissue constituent interactions.

2.
Anal Chem ; 95(43): 15861-15866, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37857348

ABSTRACT

Transport within human tissue matrices, e.g., the subcutaneous tissue, exhibits some resemblance to chromatographic processes. Here, a porous matrix comprising agarose beads compatible with UV-vis imaging was developed for a parallel piped rectangular flow cell (4 mm light path). Introduction of high-molecular weight dextrans (Mr ∼ 200000 and ∼500000) at 10% (w/v) rendered imaging possible by providing optical clearing of the turbid porous matrix, resulting in improved transmittance as well as resolution (from 400 to 180 µm) at 280 nm, as well as 520 nm. The interplay between diffusive and convective transport at 0 < Pe ≤ 28 was visualized at 280 nm upon injection of dexamethasone suspensions. Real-time UV-vis imaging showed in-flow cell the effect of incorporating ion-exchange resins on the retention of infliximab, lysozyme, and α-lactalbumin. The ion-exchange matrix may serve as a surrogate for polyelectrolytes in the subcutaneous tissue, assessing the potential role of electrostatic interactions of biotherapeutics upon injection. UV-vis imaging of size-exclusion chromatographic matrixes may be of interest in its own right and potentially develop into a characterization tool for injectables.


Subject(s)
Lactalbumin , Subcutaneous Tissue , Humans , Chromatography, Ion Exchange/methods
3.
Int J Pharm ; 623: 121880, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35661744

ABSTRACT

In situ formation of high viscous inverse lyotropic non-lamellar liquid crystalline phases is a promising approach for sustained drug delivery in the joint. The in situ forming process on exposure of two diclofenac-loaded preformulations to aqueous media was characterized with respect to depot size and shape, initial release and structural transitions using UV-Vis imaging and spatially and time-resolved synchrotron small-angle X-ray scattering (SAXS). The preformulations consisted of 10 % (w/w) ethanol, 10 % (w/w) water and a binary lipid mixture of glycerol monooleate (GMO):1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DOPG) or GMO:medium chain triglycerides (MCT). Upon injection of preformulations into an employed injection-cell containing excess of bio-relevant medium, rapid generation of liquid crystalline depots was observed. UV-Vis images and constructed 2D SAXS maps of the injection-cell showed depots with different shapes and sizes, and features with high nanostructural heterogeneity. More extensive swelling of the GMO:DOPG-based preformulation was observed compared to the GMO:MCT-based preformulation. The UV image analysis found that a higher amount of diclofenac was released in the image area after 20 h from the GMO:MCT depot compared to the GMO:DOPG depot. The injection-cell setup employing UV-Vis imaging and synchrotron SAXS constitutes an attractive approach for evaluating the in situ forming processes of liquid crystalline depots.


Subject(s)
Liquid Crystals , Diclofenac , Drug Compounding , Liquid Crystals/chemistry , Scattering, Small Angle , Triglycerides , Water/chemistry , X-Ray Diffraction
4.
Acta Ophthalmol ; 100(7): 819-827, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35527390

ABSTRACT

PURPOSE: To investigate the effect of polyquaternium-1 (PQ)-preserved and benzalkonium chloride (BAK)-preserved travoprost eye drops on viability of primary human conjunctival goblet cell (GC) cultures and on secretion of mucin and cytokines. Furthermore, to evaluate the physicochemical properties of the branded travoprost eye drop Travatan® and available generics. METHODS: The effect of travoprost eye drops was evaluated on GC cultures. Cell viability was assessed through lactate dehydrogenase (LDH) and tetrazolium dye (MTT) colorimetric assays. Mucin secretion was evaluated by immunohistochemical staining. Secretion of interleukin (IL)-6 and IL-8 was measured using BD Cytometric Bead Arrays. pH, viscosity, droplet mass, osmolality and surface tension were measured for all included eye drops. RESULTS: In the LDH assay, BAK travoprost caused significant GC loss after 2 hrs of incubation compared to the control. PQ travoprost caused no GC loss at any time point. Both PQ- and BAK travoprost caused secretion of mucin to the cytoplasma. No difference in IL-6 and IL-8 secretion was identified compared to controls. The pH values for the generics were lower (pH 6.0) than the pH value for Travatan (pH 6.7; p < 0.0001). The viscosity was lowest for Travatan, while the mean droplet mass was higher for Travatan (35 mg) than the generics (28-30 mg; p ≤ 0.0318). The osmolality and surface tension did not differ between the eye drops investigated. CONCLUSION: BAK travoprost caused GC loss, indicating that PQ preservation may be preferable in treatment of glaucoma. Furthermore, physicochemical properties of branded and generic travoprost eye drops can not be assumed to be identical.


Subject(s)
Benzalkonium Compounds , Goblet Cells , Antihypertensive Agents , Benzalkonium Compounds/chemistry , Benzalkonium Compounds/pharmacology , Humans , Interleukin-6 , Interleukin-8 , Lactate Dehydrogenases , Mucins , Ophthalmic Solutions/pharmacology , Preservatives, Pharmaceutical/chemistry , Preservatives, Pharmaceutical/pharmacology , Travoprost/pharmacology
5.
Int J Mol Sci ; 23(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35408971

ABSTRACT

A UV imaging release-testing setup comprising an agarose gel as a model for tumorous tissue was developed. The setup was optimized with respect to agarose concentration (0.5% (w/v)), injection procedure, and temperature control. A repeatable injection protocol was established allowing injection into cavities with well-defined geometries. The effective resolution of the SDi2 UV imaging system is 30-80 µm. The linear range of the imaging system is less than that of typical spectrophotometers. Consequently, non-linear cAMP calibration curves were applied for quantification at 280 nm. The degree of deviation from Beer's law was affected by the background absorbance of the gel matrix. MATLAB scripts provided hitherto missing flexibility with respect to definition and utilization of quantification zones, contour lines facilitating visualization, and automated, continuous data analysis. Various release patterns were observed for an aqueous solution and in situ forming Pluronic F127 hydrogel and PLGA implants containing cAMP as a model for STING ligands. The UV imaging and MATLAB data analysis setup constituted a significant technical development in terms of visualizing behavior for injectable formulations intended for intra-tumoral delivery, and, thereby, a step toward establishment of a bio-predictive in vitro release-testing method.


Subject(s)
Hydrogels , Poloxamer , Sepharose , Temperature
6.
Int J Pharm ; 609: 121183, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34653562

ABSTRACT

In situ forming implants are exposed to an extracellular matrix resembling a gel rather than aqueous solution upon subcutaneous administration. The aim of study was to develop a gel-based release testing system for characterizing the long-term in vitro behavior of in situ forming implants. The gel-based system consisted of an agarose gel mimicking the subcutaneous injection site and a receiver layer comprising phosphate buffer. Poly(D,L-lactide-co-glycolide) in situ forming implants containing leuprolide acetate as the model peptide and N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO) or triacetin as co-solvent were investigated. The gel-based release testing system discriminated between the formulations. Accelerated release data obtained at elevated temperatures were able to predict real-time release applying the Arrhenius equation. Monitoring of the microenvironmental pH of the implants was performed by UV-Vis imaging in the gel-based system at 50 °C. A pH drop (from pH 7.4 to 6.7 for the NMP and DMSO implants, to pH 5.5 for the triacetin implants) within the first day was observed, followed by an increase to pH âˆ¼7.4. The gel-based system coupled with UV imaging offered opportunity for detailed evaluation and prediction of the in vitro performance of long-acting injectables, facilitating future development of in situ depot forming delivery systems.


Subject(s)
Lactic Acid , Polyglycolic Acid , Drug Implants , Leuprolide , Polylactic Acid-Polyglycolic Acid Copolymer , Triacetin
7.
J Colloid Interface Sci ; 602: 415-425, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34144300

ABSTRACT

Formation of high viscous inverse lyotropic liquid crystalline phases in situ upon exposure of low viscous drug-loaded lipid preformulations to synovial fluid provides a promising approach for design of depot formulations for intra-articular drug delivery. Rational formulation design relies on a fundamental understanding of the synovial fluid-mediated dynamic structural transitions occurring at the administration site. At conditions mimicking the in vivo situation, we investigated in real-time such transitions at multiple positions by synchrotron small-angle X-ray scattering (SAXS) combined with an injection-cell. An injectable diclofenac-loaded quaternary preformulation consisting of 72/8/10/10% (w/w) glycerol monooleate/1,2-dioleoyl-glycero-3-phospho-rac-(1-glycerol)/ethanol/water was injected into hyaluronic acid solution or synovial fluid. A fast generation of a coherent drug depot of inverse bicontinuous Im3m and Pn3m cubic phases was observed. Through construction of 2D spatial maps from measurements performed 60 min after injection of the preformulation, it was possible to differentiate liquid crystalline rich- and excess hyaluronic acid solution- or synovial fluid-rich regimes. Synchrotron SAXS findings confirmed that the exposure of the preformulation to the media leads to alterations in structural features in position- and time-dependent manners. Effects of biologically relevant medium composition on the structural features, and implications for development of formulations with sustained drug release properties are highlighted.


Subject(s)
Liquid Crystals , Drug Liberation , Lipids , Scattering, Small Angle , X-Ray Diffraction
8.
Dan Med J ; 68(2)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33543702

ABSTRACT

INTRODUCTION: Stakeholder involvement in research is emphasised to improve relevance. We aimed to identify, define and prioritise important research topics seen from the point of view of people with osteoarthritis (OA). METHODS: We invited 1,315 members of the user panel of the Danish Rheumatism Association to answer an electronic survey that included; 1) an open-ended question about important research topics (free-text response option), 2) 15 predefined research topics to be rated for importance and 3) predefined topics grouped into four categories in which the most important was prioritised. Free-text responses were analysed using content analysis. RESULTS: Out of 850 (65%) respondents, 483 had OA (mean ± standard deviation age 60.3 ± 10.2 years, 91% female). From the free-text responses, we identified seven research topics; 1) diagnostics, 2) prevention, 3) side effects, 4) treatment, 5) aetiology, 6) being young with OA and 7) quality of life. For "treatment", we identified seven subtopics. Out of all topics and subtopics, "pain management" was the most frequently highlighted. All predefined topics were rated as "very important" or "somewhat important" by more than 75% of the respondents. The top prioritised topics within each category were 1) improving the diagnosis, 2) individualised treatment, 3) shared decision-making and 4) cross-sector collaboration and collaboration between professionals. CONCLUSIONS: We identified research topics that were important in the eyes of people with OA and found that "pain management" was particularly emphasised. FUNDING: none. TRIAL REGISTRATION: not relevant.


Subject(s)
Osteoarthritis , Quality of Life , Female , Humans , Male , Middle Aged , Osteoarthritis/therapy , Research , Surveys and Questionnaires
9.
J Colloid Interface Sci ; 582(Pt B): 773-781, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32916575

ABSTRACT

Administration of parenteral liquid crystalline phases, forming in-vivo with tunable nanostructural features and sustained release properties, offers an attractive approach for treatment of infections and local drug delivery. It has also a potential use for postoperative pain management after arthroscopic knee surgery. However, the optimal use of this drug delivery principle requires an improved understanding of the involved dynamic structural transitions after administration of low-viscous stimulus-responsive lipid precursors and their fate after direct contact with the biological environment. These precursors (preformulations) are typically based on a single biologically relevant lipid (or a lipid combination) with non-lamellar liquid crystalline phase forming propensity. In relation to liquid crystalline depot design for intra-articular drug delivery, it was our interest in the present study to shed light on such dynamic structural transitions by combining synchrotron SAXS with a remote controlled addition of synovial fluid (or buffer containing 2% (w/v) albumin). This combination allowed for monitoring in real-time the hydration-triggered dynamic structural events on exposure of the lipid precursor (organic stock solution consisting of the binary lipid mixture of monoolein and castor oil) to excess synovial fluid (or excess buffer). The synchrotron SAXS findings indicate a fast generation of inverse bicontinuous cubic phases within few seconds. The effects of (i) the organic solvent N-methyl-2-pyrolidone (NMP), (ii) the lipid composition, and (iii) the albumin content on modulating the structures of the self-assembled lipid aggregates and the implications of the experimental findings in the design of liquid crystalline depots for intra-articular drug delivery are discussed.


Subject(s)
Liquid Crystals , Pharmaceutical Preparations , Lipids , Scattering, Small Angle , Synovial Fluid , X-Ray Diffraction
10.
BMJ Open Ophthalmol ; 6(1): e000892, 2021.
Article in English | MEDLINE | ID: mdl-34993350

ABSTRACT

OBJECTIVE: To investigate the short-term impact on human conjunctival goblet cell (GC) survival and mucin release of acute exposure to benzalkonium chloride (BAK) preserved and preservative-free (PF) 0.005% (w/v) latanoprost (LT) eye drops, and to compare the eye drops' physicochemical properties. METHODS AND ANALYSIS: Primary GC cultures were established from human conjunctival donor tissue. The impact of eye drops on GC survival was assessed using a lactate dehydrogenase assay. Mucin release was evaluated through mucin-specific immunostaining. pH value, osmolality, drop mass and surface tension for all LT eye drops were measured. RESULTS: After application with PF-LT for 30 min (min), the GC survival was maintained compared with control (p=0.9941), while all BAK-LT eye drops reduced survival with approximately 30% (p<0.02). Following application with PF-LT for 30 min, mucin was found around the GC nucleus, as seen in the vehicle control, indicating no secretion. In contrast, BAK-LT caused diffuse staining of mucin, similar to the secretagogue histamine, indicating stimulation of secretion. The pH value of the BAK-LT and PF-LT eye drops were 6.0-6.9 and 6.8, respectively. The osmolality was 258-288 mOsm/kg for the BAK-LT eye drops and 276 for PF-LT eye drops. The mean drop mass was 26-31 mg for the BAK-LT eye drops and 30 mg for PF-LT. The surface tension was lower for all BAK-LT eye drops (31.1-32.1 mN/m) compared with PF-LT (42 mN/m). CONCLUSION: PF-LT compared with various branded and generic LT preparations containing BAK are less cytotoxic when applied to cultured GCs.

11.
J Pharm Biomed Anal ; 194: 113789, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33298380

ABSTRACT

The purpose of this study was to investigate whole-dosage form UV-vis imaging as a potential tool for functional characterization of excipients used in solid oral dosage forms. To this end, tablets (average mass 260.0 mg, 224.5 mg and 222.1 mg) containing theophylline anhydrate (20 % w/w), 1% (w/w) magnesium stearate, and 79 % (w/w) of either microcrystalline cellulose (MCC, Avicel PH 101) or hydroxypropyl methylcellulose (HPMC, Methocel K15 M or K100 M) were prepared as model systems. Drug liberation from tablets was studied in 0.01 M HCl at 37 °C using a Sirius SDi2 equipped with a USP IV type flow cell comprising a UV-vis imaging detector operating at 255 nm and 520 nm. The effluent from the flow cell was passed through a downstream spectrophotometer, and UV-vis spectra in the wavelength range 200-800 nm were recorded every 2 min. The erosion and swelling behavior of the MCC tablets and HPMC K15 M and K100 M tablets were visualized in real time. The swelling of HPMC K15 M and K100 M containing tablets was assessed quantitatively as changes in tablet diameter measured at 520 nm, and was clearly distinguished from the swelling of the MCC tablets. Namely, an increment of 2.5 mm in diameter was determined for the HPMC tablets while the MCC tablets increased by 0.5-1 mm in diameter. Gel layers of variable thickness were observed only for the HPMC K15 M and K100 M tablets. In addition, a relatively high initial liberation rate of theophylline was found for the MCC tablets as compared to the HPMC tablets. UV-vis imaging revealed features of liberation not revealed by simply measuring drug concentration in the dissolution media or by visual assessment. It may be sufficiently sensitive to be further developed for functional characterization of excipients and provide insights into drug-excipient interactions likely to be useful in formulation development.


Subject(s)
Chemistry, Pharmaceutical , Excipients , Delayed-Action Preparations , Drug Liberation , Hypromellose Derivatives , Methylcellulose , Solubility , Tablets
12.
Mol Pharm ; 17(12): 4522-4532, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33164519

ABSTRACT

The initial drug release from in situ forming implants is affected by factors such as the physicochemical properties of the active pharmaceutical ingredient, the type of the excipients utilized, and the surrounding environment. The feasibility of UV-vis imaging for characterization of the initial behavior of poly(d,l-lactide-co-glycolide) (PLGA)/1-methyl-2-pyrrolidinone (NMP) in situ forming implants was investigated. The in vitro release of leuprolide acetate (LA) and implant formation in real time were monitored using dual-wavelength imaging at 280 and 525 nm, respectively, in matrices based on agarose gel and hyaluronic acid (HA) solution emulating the subcutaneous matrix. Three hours upon injection of the pre-formulation, approximately 15% of the total amount of LA administered was found in the agarose gel, while 5% was released from the implant into the HA solution. Concurrently, more extensive swelling of the implants in the HA solution as compared to implants in the agarose gel was observed. Transport of both LA and the solvent NMP was investigated using UV-vis imaging in a small-scale cell where the geometry of the formulation was controlled, showing a linear correlation between drug release and solvent escape. Light microscopy showed that the microstructures of the resulting implants in agarose gel and HA solution were different, which may be attributed to the different solvent exchange rates. UV imaging was also used to examine the interaction of LA with the release medium by characterizing the diffusion of LA in agarose gel, HA solution, and phosphate buffered saline. The reduced LA diffusivity in HA solution as compared to agarose gel and the LA distribution coefficient in the agarose gel-HA system indicated the presence of interactions between LA and HA. Our findings show that the external environment affects the solvent exchange kinetics for in situ forming implants in vitro, resulting in different types of initial release behavior. UV-vis imaging in combination with biorelevant matrices may offer an interesting approach in the development of in situ forming implant delivery systems.


Subject(s)
Drug Delivery Systems/methods , Drug Implants/pharmacokinetics , Excipients/chemistry , Leuprolide/pharmacokinetics , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Drug Implants/administration & dosage , Drug Implants/chemistry , Drug Liberation , Leuprolide/administration & dosage , Leuprolide/chemistry , Microscopy, Ultraviolet , Molecular Imaging/methods , Solubility
13.
Eur J Pharm Sci ; 145: 105239, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-31987985

ABSTRACT

Therapeutic proteins and peptides are mainly administrated by subcutaneous injection. In vitro release testing of subcutaneous injectables performed using methods that take the structure and environment of the subcutaneous tissue into account may improve predictability of the in vivo behavior and thereby facilitate establishment of in vitro in vivo correlations. The aim of the study was to develop a biopredictive flow-through in vitro release method with a gel-type matrix for subcutaneously administered formulations and to explore the possibility of establishing a level A in vitro in vivo correlation for selected insulin products. A novel gel-based flow-through method with the incorporation of an injection step was used to assess selected commercial insulin formulations with different duration of action (Actrapid®, Mixtard® 30, Insulatard®, Lantus®). The in vitro release method provided the correct rank ordering in relation to the in vivo performance. For the modified release insulins Insulatard® and Lantus®, an in vitro in vivo correlation using non-linear time scaling was established based on the in vitro release data and in vivo subcutaneous absorption data of the 125I-labeled insulins taken from literature. Predicted absorption profiles were constructed using the in vitro in vivo correlation and subsequently converted into simulated plasma profiles. The approach taken may be of wider utility in characterizing injectables for subcutaneous administration.


Subject(s)
Diabetes Mellitus/blood , Diabetes Mellitus/drug therapy , Insulins/administration & dosage , Insulins/blood , Subcutaneous Tissue/drug effects , Subcutaneous Tissue/metabolism , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/metabolism , Drug Liberation/drug effects , Drug Liberation/physiology , Humans , Injections, Subcutaneous
14.
J Pharm Sci ; 109(4): 1529-1536, 2020 04.
Article in English | MEDLINE | ID: mdl-31927039

ABSTRACT

Intra-articular depot injectables based on in situ suspension formation of ester prodrugs of nonsteroidal anti-inflammatory drugs are promising for management of joint pain. As candidates for this delivery approach, 5 diclofenac ester prodrugs comprising different imidazole-containing promoieties were synthesized and their physicochemical properties characterized. In vitro hydrolysis rates were investigated in buffer solutions, in 40% (v/v) human, equine, canine, and rat plasma, and in 80% (v/v) human and equine synovial fluid. Bioconversion of the prodrugs to diclofenac was found to be enzyme-mediated and follow pseudo-first-order kinetics. Large variations in hydrolysis rates were observed between species and between prodrugs, with prodrug half-lives in plasma from canine, rat, horse, and human of 3.44-141 min, 2.51-14 min, 0.58-1.31 min, and 0.23-1.70 min, respectively. Half-lives in human and equine synovial fluid were 1.6- to 28-fold larger than in plasma. The results highlight the significance of species and tissue variation in prodrug design and suggest that the horse may constitute a suitable model for testing the intra-articular depot approach. Two prodrug candidates appeared promising for future in vivo studies based on their rapid in vitro enzyme-mediated bioconversion to diclofenac and physiochemical characteristics.


Subject(s)
Diclofenac , Prodrugs , Animals , Anti-Inflammatory Agents, Non-Steroidal , Dogs , Esters , Horses , Hydrolysis , Rats
15.
Int J Pharm ; 566: 445-453, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31170479

ABSTRACT

There is a need for bio-predictive and well-characterized in vitro release models in the development of intra-articular depot formulations. Here, the commercially-available Scissor system, a membrane-based two-compartment release testing instrument, was applied to characterize the transport and release of the drug diclofenac employing conditions intended to mimic transport in the synovial joint. The fate of hyaluronic acid and human serum albumin, the main bio-relevant components incorporated in the system, was investigated. A promising strategy for providing sustained drug release upon intra-articular administration are lipid-based preformulations forming non-lamellar liquid crystalline phases in situ. The usefulness of the Scissor system for investigating the initial drug release from these delivery systems was evaluated. The diclofenac release rate upon injection of an aqueous solution was influenced by the composition of the injection site matrix, i.e. the hyaluronic acid content. Hyaluronic acid and human serum albumin were found to escape from the donor compartment into the acceptor medium through the employed polycarbonate membrane. Sustained diclofenac release was obtained by formation of highly viscous liquid crystalline phases upon injection of the lipid-based preformulations. The study shows the feasibility and potential of the Scissor system for testing initial release of intra-articular depot formulations of low-molecular-weight drug compounds.


Subject(s)
Injections, Intra-Articular , Models, Biological , Biological Transport , Diclofenac/administration & dosage , Diclofenac/chemistry , Drug Liberation , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/chemistry , Serum Albumin, Human/administration & dosage , Serum Albumin, Human/chemistry
16.
Phys Chem Chem Phys ; 21(27): 15142-15150, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31243413

ABSTRACT

Improvement of pain management strategies after arthroscopic surgery by multimodal analgesia may include the use of long-acting amide local anesthetics. Among these anesthetics, the low molecular weight local anesthetic agent bupivacaine (BUP) is attractive for use in postoperative pain management. However, it has a relatively short duration of action and imposes a higher risk of systemic toxicity at relatively large bolus doses. Bupivacaine encapsulation in lipid-based delivery systems is an attractive strategy for prolonging its local anaesthetic effect and reducing the associated undesirable systemic side effects. Here, we discuss the potential development of liquid crystalline nanocarriers for delivering BUP by using a binary lipid mixture of citrem and soy phosphatidylcholine (SPC) at different weight ratios. The produced safe-by-design family of citrem/SPC nanoparticles is attractive for use in the development of nanocarriers owing to the previously reported hemocompatibility. BUP encapsulation efficiency (EE), depending on the lipid composition, was in the range of 65-77%. In this study, nanoparticle tracking analysis (NTA) and synchrotron small-angle X-ray scattering (SAXS) were employed to gain insight into the effect of BUP solubilization and lipid composition on the size and structural characteristics of the produced citrem/SPC nanodispersions. BUP loading led to a slight change in the mean sizes (diameters) and size distributions of citrem/SPC nanoparticles. However, we found that BUP accommodation into the self-assembled interiors of nanoparticles, triggers significant structural alterations in BUP concentration- and lipid composition-dependent manners, which involve vesicle-cubosome and vesicle-hexosome transitions. The structural tunability of citrem/SPC nanoparticles and the implications for potential applications in intra-articular BUP delivery are discussed.


Subject(s)
Bupivacaine/chemistry , Bupivacaine/metabolism , Colloids/chemistry , Nanoparticles/chemistry , Anesthetics, Local/administration & dosage , Anesthetics, Local/chemistry , Anesthetics, Local/metabolism , Bupivacaine/administration & dosage , Drug Delivery Systems , Solubility
17.
Anal Chem ; 90(11): 6413-6418, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29746095

ABSTRACT

Evaluation of drug precipitation is important in order to address challenges regarding low and variable bioavailability of poorly water-soluble drugs, to assess potential risk of patient safety with infusion therapy, and to explore injectable in situ suspension-forming drug delivery systems. Generally, drug precipitation is assessed in vitro through solution concentration analysis methods. Dual-wavelength UV-vis imaging is a novel imaging technique that may provide an opportunity for simultaneously monitoring changes in both solution and solid phases during precipitation. In the present study, a multimodal approach integrating UV-vis imaging, light microscopy, and Raman spectroscopy was developed for characterization of piroxicam supersaturation, precipitation, and dissolution in a flow-through setup. A solution of piroxicam dissolved in 1-methyl-2-pyrrolidinone was injected into a flowing aqueous environment (pH 7.4), causing piroxicam to precipitate. Imaging at 405 and 280 nm monitored piroxicam concentration distributions during precipitation and revealed different supersaturation levels dependent on the initial concentration of the piroxicam solution. The combination with imaging at 525 nm, light microscopy, and Raman spectroscopy measurements demonstrated concentration-dependent precipitation and the formation, growth, and dissolution of individual particles. Results emphasize the importance of the specific hydrodynamic conditions on the piroxicam precipitation. The approach used may facilitate comprehensive understanding of drug precipitation and dissolution processes and may be developed further into a basic tool for formulation screening and development.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Optical Imaging/instrumentation , Piroxicam/chemistry , Spectrophotometry, Ultraviolet/instrumentation , Chemical Precipitation , Microscopy/methods , Optical Imaging/methods , Pyrrolidinones/chemistry , Solubility , Spectrophotometry, Ultraviolet/methods , Spectrum Analysis, Raman/methods , Ultraviolet Rays
18.
J Pharm Biomed Anal ; 150: 95-106, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29216591

ABSTRACT

For poly (lactide-co-glycolide acid) (PLGA)-based in situ forming implants, the rate of implant formation plays an important role in determining the overall drug release kinetics. Currently, in vitro techniques capable of characterizing the processes of drug release and implant formation at the same time are not available. A hydrogel-based in vitro experimental setup was recently developed requiring only microliter of formulation and forming a closed system potentially suitable for interfacing with various spectroscopic techniques. The aim of the present proof-of-concept study was to investigate the feasibility of concomitant UV imaging, Vis imaging and light microscopy for detailed characterization of the behavior of in situ forming PLGA implants in the hydrogel matrix mimicking the subcutis. The model compounds, piroxicam and α-lactalbumin were added to PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin solutions. Upon bringing the PLGA-solvent-compound pre-formulation in contact with the hydrogel, Vis imaging and light microscopy were applied to visualize the depot formation and UV imaging was used to quantify drug transport in the hydrogel. As compared to piroxicam, the α-lactalbumin invoked an acceleration of phase separation and an increase of implant size. α-Lactalbumin was released faster from the PLGA-1-methyl-2-pyrrolidinone system than the PLGA-triacetin system opposite to the piroxicam release pattern. A linear relationship between the rate of implant formation and initial compound release within the first 4h was established for the PLGA-NMP systems. This implies that phase separation may be one of the controlling factors in drug release. The rate of implant formation may be an important parameter for predicting and tailoring drug release. The approach combining UV imaging, Vis imaging and light microscopy may facilitate understanding of release processes and holds potential for becoming a useful tool in formulation development of in situ forming implants.


Subject(s)
Drug Delivery Systems , Lactalbumin/administration & dosage , Lactic Acid/chemistry , Piroxicam/administration & dosage , Polyglycolic Acid/chemistry , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Drug Implants , Drug Liberation , Hydrogels , Polylactic Acid-Polyglycolic Acid Copolymer , Pyrrolidinones/chemistry , Spectrophotometry, Ultraviolet/methods , Spectrum Analysis/methods , Subcutaneous Tissue/metabolism , Triacetin/chemistry
19.
J Pharm Biomed Anal ; 145: 682-691, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28803207

ABSTRACT

Phase separation of in situ forming poly (lactide-co-glycolide acid) (PLGA) implants with agarose hydrogels as the provider of nonsolvent (water) mimicking subcutaneous tissue was investigated using a novel UV-vis imaging-based analytical platform. In situ forming implants of PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin representing fast and slow phase separating systems, respectively, were evaluated using this platform. Upon contact with the agarose hydrogel, the phase separation of the systems was followed by the study of changes in light transmission and absorbance as a function of time and position. For the PLGA-1-methyl-2-pyrrolidinone system, the rate of spatial phase separation was determined and found to decrease with increasing the PLGA concentration from 20% to 40% (w/w). Hydrogels with different agarose concentrations (1% and 10% (w/v)) were prepared for providing the nonsolvent, water, to the in situ forming PLGA implants simulating the injection site environment. The resulting implant morphology depended on the stiffness of hydrogel matrix, indicating that the matrix in which implants are formed is of importance. Overall, the work showed that the UV-vis imaging-based platform with an agarose hydrogel mimicking the subcutaneous tissue holds potential in providing bio-relevant and mechanistic information on the phase separation processes of in situ forming implants.


Subject(s)
Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Dioxanes , Hydrogel, Polyethylene Glycol Dimethacrylate , Hydrogels , Polylactic Acid-Polyglycolic Acid Copolymer , Pyrrolidinones , Subcutaneous Tissue
20.
J Pharm Sci ; 105(10): 3079-3087, 2016 10.
Article in English | MEDLINE | ID: mdl-27475785

ABSTRACT

A prodrug approach for local and sustained diclofenac action after injection into joints based on ester prodrugs having a pH-dependent solubility is presented. Inherent ester prodrug properties influencing the duration of action include their pH-dependent solubility and charge state, as well as susceptibility to undergo esterase facilitated hydrolysis. In this study, physicochemical properties and pH rate profiles of 3 diclofenac ester prodrugs differing with respect to the spacer carbon chain length between the drug and the imidazole-based promoiety were determined and a rate equation for prodrug degradation in aqueous solution in the pH range 1-10 was derived. In the pH range 6-10, the prodrugs were subject to parallel degradation to yield diclofenac and an indolinone derivative. The prodrug degradation was found to be about 6-fold faster in 80% (vol/vol) human plasma as compared to 80% (vol/vol) human synovial fluid with 2-(1-methyl-1H-imidazol-2-yl)ethyl 2-(2-(2,6 dichlorophenyl)amino)phenylacetate being the poorest substrate toward enzymatic cleavage. The conversion and release of parent diclofenac from prodrug suspensions in vitro were studied using the rotating dialysis model. The results suggest that it is possible to alter and control dissolution and reconversion behavior of the diclofenac prodrugs, thus making the prodrug approach feasible for local and sustained diclofenac action after joint injection.


Subject(s)
Diclofenac/chemistry , Diclofenac/pharmacokinetics , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Synovial Fluid/metabolism , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Diclofenac/administration & dosage , Esters , Humans , Injections, Intra-Articular , Pharmacokinetics , Prodrugs/administration & dosage , Suspensions , Synovial Fluid/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...