Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
2.
Sci Rep ; 14(1): 12778, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834684

ABSTRACT

Working forests comprise a large proportion of forested landscapes in the southeastern United States and are important to the conservation of bats, which rely on forests for roosting and foraging. While relationships between bat ecology and forest management are well studied during summer, winter bat ecology remains understudied. Hence, we aimed to identify the diet composition of overwintering bats, compare the composition of prey consumed by bat species, and determine the potential role of forest bats as pest controllers in working forest landscapes of the southeastern U.S. Coastal Plain. During January to March 2021-2022, we captured 264 bats of eight species. We used DNA metabarcoding to obtain diet composition from 126 individuals of seven bat species identifying 22 orders and 174 families of arthropod prey. Although Coleoptera, Diptera, and Lepidoptera were the most consumed orders, we found that bats had a generalist diet but with significant differences among some species. We also documented the consumption of multiple insect pests (e.g., Rhyacionia frustrana) and disease vectors (e.g., Culex spp). Our results provide important information regarding the winter diet of bats in the southeastern U.S. Coastal Plain and their potential role in controlling economically relevant pest species and disease vectors.


Subject(s)
Chiroptera , Diet , Forests , Seasons , Animals , Chiroptera/physiology , Southeastern United States , Predatory Behavior/physiology
3.
Proc Natl Acad Sci U S A ; 120(7): e2201943119, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745782

ABSTRACT

Ecological restoration is essential for maintaining biodiversity in the face of dynamic, global changes in climate, human land use, and disturbance regimes. Effective restoration requires understanding bottlenecks in plant community recovery that exist today, while recognizing that these bottlenecks may relate to complex histories of environmental change. Such understanding has been a challenge because few long-term, well-replicated experiments exist to decipher the demographic processes influencing recovery for numerous species against the backdrop of multiyear variation in climate and management. We address this challenge through a long-term and geographically expansive experiment in longleaf pine savannas, an imperiled ecosystem and biodiversity hotspot in the southeastern United States. Using 48 sites at three locations spanning 480 km, the 8-y experiment manipulated initial seed arrival for 24 herbaceous plant species and presence of competitors to evaluate the impacts of climate variability and management actions (e.g., prescribed burning) on plant establishment and persistence. Adding seeds increased plant establishment of many species. Cool and wet climatic conditions, low tree density, and reduced litter depth also promoted establishment. Once established, most species persisted for the duration of the 8-y experiment. Plant traits were most predictive when tightly coupled to the process of establishment. Our results illustrate how seed additions can restore plant diversity and how interannual climatic variation affects the dynamics of plant communities across a large region. The significant effects of temperature and precipitation inform how future climate may affect restoration and conservation via large-scale changes in the fundamental processes of establishment and persistence.


Subject(s)
Anthropogenic Effects , Ecosystem , Humans , Biodiversity , Plants , Seeds
4.
Biol Rev Camb Philos Soc ; 96(5): 1868-1888, 2021 10.
Article in English | MEDLINE | ID: mdl-33978325

ABSTRACT

To robustly predict the effects of disturbance and ecosystem changes on species, it is necessary to produce structurally realistic models with high predictive power and flexibility. To ensure that these models reflect the natural conditions necessary for reliable prediction, models must be informed and tested using relevant empirical observations. Pattern-oriented modelling (POM) offers a systematic framework for employing empirical patterns throughout the modelling process and has been coupled with complex systems modelling, such as in agent-based models (ABMs). However, while the production of ABMs has been rising rapidly, the explicit use of POM has not increased. Challenges with identifying patterns and an absence of specific guidelines on how to implement empirical observations may limit the accessibility of POM and lead to the production of models which lack a systematic consideration of reality. This review serves to provide guidance on how to identify and apply patterns following a POM approach in ABMs (POM-ABMs), specifically addressing: where in the ecological hierarchy can we find patterns; what kinds of patterns are useful; how should simulations and observations be compared; and when in the modelling cycle are patterns used? The guidance and examples provided herein are intended to encourage the application of POM and inspire efficient identification and implementation of patterns for both new and experienced modellers alike. Additionally, by generalising patterns found especially useful for POM-ABM development, these guidelines provide practical help for the identification of data gaps and guide the collection of observations useful for the development and verification of predictive models. Improving the accessibility and explicitness of POM could facilitate the production of robust and structurally realistic models in the ecological community, contributing to the advancement of predictive ecology at large.


Subject(s)
Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL