Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Mol Phylogenet Evol ; 57(2): 829-35, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20674752

ABSTRACT

Moray eels (Muraenidae) are apex predators on coral reefs around the world, but they are not well studied because their cryptic habitats and occasionally aggressive behaviors make them difficult to collect. We provide a molecular phylogeny of moray eels including 44 species representing two subfamilies, eight genera, and all tropical ocean basins. Phylogenetic relationships among these taxa are estimated from portions of mitochondrial loci cytochrome b (632 bp) and cytochrome oxidase subunit 1 (596 bp), and portions of the nuclear loci RAG-1 (421 bp) and RAG-2 (754 bp). We test four sets of contrasting phylogenetic hypotheses using Bayes Factors, Shimodaira-Hasegawa tests, and Templeton tests. First, our results support the subfamily-level taxonomic distinction between true morays (Muraeninae) and snakemorays (Uropterygiinae), statistically rejecting hypotheses of non-monophyly for each subfamily. Second, we reject a monophyletic grouping of the genera Gymnomuraena and Echidna, which share a durophagous (shell-crushing) cranial morphology and dentition, indicating that the durophagous characters are not homologous. Third, we demonstrate that durophagous feeding habits and associated morphological characters have evolved in parallel in an ancestor of Gymnomuraena and at least three additional times within the genus Echidna. Finally, the tree topology indicates multiple invasions of the Atlantic from the Indo-Pacific, one of these occurring immediately prior to formation of the Isthmus of Panama approximately 2.8 MYA (million years ago) and one or two others occurring in the early to mid Miocene. Cladogenesis occurring within the Atlantic during the mid Miocene and Pliocene also contributed to moray species diversity. These data include a pair of sister species separated by the Isthmus of Panama, allowing a time-calibrated tree with an estimated crown age for Muraenidae at between 41 and 60 MYA, consistent with fossil evidence. Most lineage accumulation within morays occurred from the late Oligocene (24-27 MYA) through the Miocene (5-23 MYA) to the late Pliocene (∼ 2.5 MYA).


Subject(s)
Eels/classification , Eels/genetics , Phylogeny , Animals , Atlantic Ocean , Jaw/anatomy & histology
2.
J Hered ; 101(4): 391-402, 2010.
Article in English | MEDLINE | ID: mdl-20375076

ABSTRACT

Reef fishes disperse primarily as oceanic "pelagic" larvae, and debate continues over the extent of this dispersal, with recent evidence for geographically restricted (closed) populations in some species. In contrast, moray eels have the longest pelagic larval stages among reef fishes, possibly providing opportunities to disperse over great distances. We test this prediction by measuring mitochondrial DNA (mtDNA) and nuclear DNA variation in 2 species of moray eels, Gymnothorax undulatus (N = 165) and G. flavimarginatus (N = 124), sampled at 14-15 locations across the Indo-Pacific. The mtDNA data comprise 632 bp of cytochrome b and 596 bp of cytochrome oxidase I. Nuclear markers include 2 recombination-activating loci (421 bp of RAG-1 and 754 bp of RAG-2). Analyses of molecular variance and Mantel tests indicate little or no genetic differentiation, and no isolation by distance, across 22 000 km of the Indo-Pacific. We estimate that mitochondrial genetic variation coalesces within the past about 2.3 million years (My) for G. flavimarginatus and within the past about 5.9 My for G. undulatus. Permutation tests of geographic distance on the mitochondrial haplotype networks indicate recent range expansions for some younger haplotypes (estimated within approximately 600 000 years) and episodic fragmentation of populations at times of low sea level. Our results support the predictions that the extended larval durations of moray eels enable ocean-wide genetic continuity of populations. This is the first phylogeographic survey of the moray eels, and morays are the first reef fishes known to be genetically homogeneous across the entire Indo-Pacific.


Subject(s)
Eels/genetics , Genetic Drift , Phylogeny , Animal Migration , Animals , DNA, Mitochondrial/metabolism , Electron Transport Complex IV/genetics , Gene Flow , Genetics, Population , Geography , Larva/metabolism , Pacific Ocean , Sequence Analysis, DNA
4.
Syst Biol ; 57(4): 562-73, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18686194

ABSTRACT

We examine the effects of ecological opportunity and geographic area on rates of species accumulation and morphological evolution following archipelago colonization in day geckos (genus Phelsuma) in the Indian Ocean. Using a newly generated molecular phylogeny for the genus, we present evidence that these geckos likely originated on Madagascar, whereas colonization of three archipelagos in the Indian Ocean, the Seychelles, Mascarene, and Comoros Islands has produced three independent monophyletic radiations. We find that rates of species accumulation are not elevated following colonization but are roughly equivalent on all three isolated archipelagos and on the larger island of Madagascar. However, rates of species accumulation have slowed through time on Madagascar. Rates of morphological evolution are higher in both the Mascarene and Seychelles archipelagos compared to rates on Madagascar. This negative relationship between rate of morphological evolution and island area suggests that ecological opportunity is an important factor in diversification of day gecko species.


Subject(s)
Genetic Speciation , Geography , Lizards/anatomy & histology , Lizards/classification , Animals , Bayes Theorem , Indian Ocean Islands , Models, Biological , Molecular Sequence Data , Phylogeny , Principal Component Analysis , Sequence Alignment
5.
Mol Phylogenet Evol ; 49(1): 277-91, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18611442

ABSTRACT

A previous phylogeographic study of mitochondrial haplotypes for the Hispaniolan lizard Ameiva chrysolaema revealed deep genetic structure associated with seawater inundation during the late Pliocene/early Pleistocene and evidence of subsequent population expansion into formerly inundated areas. We revisit hypotheses generated by our previous study using increased geographic sampling of populations and analysis of three nuclear markers (alpha-enolase intron 8, alpha-cardiac-actin intron 4, and beta-actin intron 3) in addition to mitochondrial haplotypes (ND2). Large genetic discontinuities correspond spatially and temporally with historical barriers to gene flow (sea inundations). NCPA cross-validation analysis and Bayesian multilocus analyses of divergence times (IMa and MCMCcoal) reveal two separate episodes of fragmentation associated with Pliocene and Pleistocene sea inundations, separating the species into historically separate Northern, East-Central, West-Central, and Southern population lineages. Multilocus Bayesian analysis using IMa indicates asymmetrical migration from the East-Central to the West-Central populations following secondary contact, consistent with expectations from the more pervasive sea inundation in the western region. The West-Central lineage has a genetic signature of population growth consistent with the expectation of geographic expansion into formerly inundated areas. Within each lineage, significant spatial genetic structure indicates isolation by distance at comparable temporal scales. This study adds to the growing body of evidence that vicariant speciation may be the prevailing source of lineage accumulation on oceanic islands. Thus, prior theories of island biogeography generally underestimate the role and temporal scale of intra-island vicariant processes.


Subject(s)
Genetic Speciation , Lizards/classification , Lizards/genetics , Phylogeny , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Evolution, Molecular , Gene Flow , Genes, Mitochondrial , Genetics, Population , Geography , Haplotypes , INDEL Mutation , Introns , Mitochondria/genetics , Sequence Alignment , Sequence Analysis, DNA
6.
Biol Lett ; 4(4): 434-7, 2008 Aug 23.
Article in English | MEDLINE | ID: mdl-18492644

ABSTRACT

Molecular genetic analyses show that introduced populations undergoing biological invasions often bring together individuals from genetically disparate native-range source populations, which can elevate genotypic variation if these individuals interbreed. Differential admixture among multiple native-range sources explains mitochondrial haplotypic diversity within and differentiation among invasive populations of the lizard Anolis sagrei. Our examination of microsatellite variation supports the hypothesis that lizards from disparate native-range sources, identified using mtDNA haplotypes, form genetically admixed introduced populations. Furthermore, within-population genotypic diversity increases with the number of sources and among-population genotypic differentiation reflects disparity in their native-range sources. If adaptive genetic variation is similarly restructured, then the ability of invasive species to adapt to new conditions may be enhanced.


Subject(s)
Genetic Variation , Lizards/genetics , Alleles , Animals , Behavior, Animal , DNA, Mitochondrial/chemistry , Ecosystem , Haplotypes , Hybridization, Genetic , Lizards/physiology , Microsatellite Repeats , Phylogeny , Population Dynamics , Sequence Analysis, DNA , Southeastern United States
7.
Mol Ecol ; 16(8): 1579-91, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17402975

ABSTRACT

The biological invasion of the lizard Anolis sagrei provides an opportunity to study evolutionary mechanisms that produce morphological differentiation among non-native populations. Because the A. sagrei invasion represents multiple native-range source populations, differential admixture as well as random genetic drift and natural selection, could shape morphological evolution during the invasion. Mitochondrial DNA (mtDNA) analyses reveal seven distinct native-range source populations for 10 introduced A. sagrei populations from Florida, Louisiana and Texas (USA), and Grand Cayman, with 2-5 native-range sources contributing to each non-native population. These introduced populations differ significantly in frequencies of haplotypes from different native-range sources and in body size, toepad-lamella number, and body shape. Variation among introduced populations for both lamella number and body shape is explained by differential admixture of various source populations; mean morphological values of introduced populations are correlated with the relative genetic contributions from different native-range source populations. The number of source populations contributing to an introduced population correlates with body size, which appears independent of the relative contributions of particular source populations. Thus, differential admixture of various native-range source populations explains morphological differences among introduced A. sagrei populations. Morphological differentiation among populations is compatible with the hypothesis of selective neutrality, although we are unable to test the hypothesis of interdemic selection among introductions from different native-range source populations.


Subject(s)
Adaptation, Biological , Lizards/anatomy & histology , Animals , Body Size , DNA, Mitochondrial/chemistry , Genetic Drift , Haplotypes , Lizards/classification , Lizards/genetics , Phylogeny , Population Dynamics , Selection, Genetic , Sequence Analysis, DNA
8.
Conserv Biol ; 21(6): 1612-25, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18173485

ABSTRACT

Invasive species are classically thought to suffer from reduced within-population genetic variation compared to their native-range sources due to founder effects and population bottlenecks during introduction. Reduction in genetic variation in introduced species may limit population growth, increase the risk of extinction, and constrain adaptation, hindering the successful establishment and spread of an alien species. Results of recent empirical studies, however, show higher than expected genetic variation, rapid evolution, and multiple native-range sources in introduced populations, which challenge the classical scenario of invasive-species genetics. With mitochondrial DNA (mtDNA) sequence data, we examined the molecular genetics of 10 replicate introductions of 8 species of Anolis lizards. Eighty percent of introductions to Florida and the Dominican Republic were from multiple native-range source populations. MtDNA haplotypes restricted to different geographically distinct populations in the native range of a species commonly occurred as intrapopulation polymorphisms in introduced populations. Two-thirds of introduced populations had two or more sources, and admixture elevated genetic variation in half of the introduced populations above levels typical of native-range populations. The mean pairwise sequence divergence among haplotypes sampled within introduced populations was nearly twice that within native-range populations (2.6% vs. 1.4%). The dynamics of introductions from multiple sources and admixture explained the observed genetic contrasts between native and introduced Anolis populations better than the classical scenario for most introduced populations. Elevated genetic variation through admixture occurred regardless of the mode or circumstances of an introduction. Little insight into the number of sources or amount of genetic variation in introduced populations was gained by knowing the number of physical introductions, the size of a species' non-native range, or whether it was a deliberate or accidental introduction. We hypothesize that elevated genetic variation through admixture of multiple sources is more common in biological invasions than previously thought. We propose that introductions follow a sequential, two-step process involving a reduction in genetic variation due to founder effects and population bottlenecks followed by an increase in genetic variation if admixture of individuals from multiple native-range sources occurs.


Subject(s)
Conservation of Natural Resources , Genetic Variation , Lizards/genetics , Animals , DNA, Mitochondrial/genetics , Ecosystem , Florida , Haplotypes , Phylogeny
9.
Biol Lett ; 2(3): 388-92, 2006 Sep 22.
Article in English | MEDLINE | ID: mdl-17148411

ABSTRACT

Darwin first recognized the importance of episodic intercontinental dispersal in the establishment of worldwide biotic diversity. Faunal exchange across the Bering Land Bridge is a major example of such dispersal. Here, we demonstrate with mitochondrial DNA evidence that three independent dispersal events from Asia to North America are the source for almost all lizard taxa found in continental eastern North America. Two other dispersal events across Beringia account for observed diversity among North American ranid frogs, one of the most species-rich groups of frogs in eastern North America. The contribution of faunal elements from Asia via dispersal across Beringia is a dominant theme in the historical assembly of the eastern North American herpetofauna.


Subject(s)
Biodiversity , Lizards/classification , Lizards/genetics , Phylogeny , Ranidae/classification , Ranidae/genetics , Animal Migration , Animals , Biological Evolution , DNA, Mitochondrial/metabolism , Genetic Speciation , Genetic Variation , North America
10.
Mol Phylogenet Evol ; 41(2): 368-83, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16815049

ABSTRACT

We examine phylogenetic relationships among salamanders of the family Salamandridae using approximately 2700 bases of new mtDNA sequence data (the tRNALeu, ND1, tRNAIle, tRNAGln, tRNAMet, ND2, tRNATrp, tRNAAla, tRNAAsn, tRNACys, tRNATyr, and COI genes and the origin for light-strand replication) collected from 96 individuals representing 61 of the 66 recognized salamandrid species and outgroups. Phylogenetic analyses using maximum parsimony and Bayesian analysis are performed on the new data alone and combined with previously reported sequences from other parts of the mitochondrial genome. The basal phylogenetic split is a polytomy of lineages ancestral to (1) the Italian newt Salamandrina terdigitata, (2) a strongly supported clade comprising the "true" salamanders (genera Chioglossa, Mertensiella, Lyciasalamandra, and Salamandra), and (3) a strongly supported clade comprising all newts except S. terdigitata. Strongly supported clades within the true salamanders include monophyly of each genus and grouping Chioglossa and Mertensiella as the sister taxon to a clade comprising Lyciasalamandra and Salamandra. Among newts, genera Echinotriton, Pleurodeles, and Tylototriton form a strongly supported clade whose sister taxon comprises the genera Calotriton, Cynops, Euproctus, Neurergus, Notophthalmus, Pachytriton, Paramesotriton, Taricha, and Triturus. Our results strongly support monophyly of all polytypic newt genera except Paramesotriton and Triturus, which appear paraphyletic, and Calotriton, for which only one of the two species is sampled. Other well-supported clades within newts include (1) Asian genera Cynops, Pachytriton, and Paramesotriton, (2) North American genera Notophthalmus and Taricha, (3) the Triturus vulgaris species group, and (4) the Triturus cristatus species group; some additional groupings appear strong in Bayesian but not parsimony analyses. Rates of lineage accumulation through time are evaluated using this nearly comprehensive sampling of salamandrid species-level lineages. Rate of lineage accumulation appears constant throughout salamandrid evolutionary history with no obvious fluctuations associated with origins of morphological or ecological novelties.


Subject(s)
Phylogeny , Salamandridae/classification , Salamandridae/genetics , Animals , Base Sequence , Bayes Theorem , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Molecular Sequence Data , RNA, Transfer, Amino Acid-Specific/genetics , RNA, Transfer, Leu/genetics , Sequence Alignment
11.
Proc Biol Sci ; 273(1586): 539-46, 2006 Mar 07.
Article in English | MEDLINE | ID: mdl-16537124

ABSTRACT

Adaptive radiations have served as model systems for quantifying the build-up of species richness. Few studies have quantified the tempo of diversification in species-rich clades that contain negligible adaptive disparity, making the macroevolutionary consequences of different modes of evolutionary radiation difficult to assess. We use mitochondrial-DNA sequence data and recently developed phylogenetic methodologies to explore the tempo of diversification of eastern North American Plethodon, a species-rich clade of woodland salamanders exhibiting only limited phenotypic disparity. Lineage-through-time analysis reveals a high rate of lineage accumulation, 0.8 species per million years, occurring 11-8 million years ago in the P. glutinosus species group, followed by decreasing rates. This high rate of lineage accumulation is exceptional, comparable to the most rapid of adaptive radiations. In contrast to classic models of adaptive radiation where ecological niche divergence is linked to the origin of species, we propose that phylogenetic niche conservatism contributes to the rapid accumulation of P. glutinosus-group lineages by promoting vicariant isolation and multiplication of species across a spatially and temporally fluctuating environment. These closely related and ecologically similar lineages persist through long-periods of evolutionary time and form strong barriers to the geographic spread of their neighbours, producing a subsequent decline in lineage accumulation. Rapid diversification among lineages exhibiting long-term maintenance of their bioclimatic niche requirements is an under-appreciated phenomenon driving the build-up of species richness.


Subject(s)
Urodela/genetics , Animals , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Evolution, Molecular , Genetic Variation/genetics , North America , Phylogeny , Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA
12.
J Exp Zool B Mol Dev Evol ; 306(5): 450-9, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-16506231

ABSTRACT

Anoles of the Anolis onca series represent a dramatic case of retrograde evolution, exhibiting great reduction (A. annectens) and loss (A. onca) of the subdigital pads considered a key innovation for the evolutionary radiation of anoles in arboreal environments. We present a molecular phylogenetic analysis of these anoles and their closest known relatives (A. auratus, A. lineatus, A. meridionalis, and A. nitens) using new mitochondrial DNA sequence data from the ND2 gene, five tRNA genes (tRNA(Trp), tRNA(Ala), tRNA(Asn), tRNA(Cys), tRNA(Tyr)), the origin of light-strand replication, and a portion of the CO1 gene (1,446 aligned base positions, 612 parsimony informative). Our results confirm monophyly of the A. onca series and suggest an evolutionary separation of approximately 10 million years between A. annectens and A. onca. Evolution of subdigital structure in this series illustrates ectopic expression of developmental programs that replace flexible subdigital lamellae of the toepad with rigid, keeled scales resembling dorsal digital scales. Our phylogenetic results indicate that narrowing of the toepad in A. auratus evolved separately from toepad reduction in the A. onca series. Expansion of the subdigital lamellae along the phalanges in A. auratus appears to compensate constriction of lamellae by digital narrowing, maintaining greater climbing capability in this species. Toepad evolution in the lineage ancestral to A. auratus features changes of the same developmental modules as the A. onca series but in the opposite direction. Large molecular distances between geographic populations of A. auratus indicate that its derived toepad structure is at least 9 million years old.


Subject(s)
DNA, Mitochondrial/genetics , Evolution, Molecular , Lizards/anatomy & histology , Lizards/genetics , Phylogeny , RNA, Transfer/genetics , Animals , DNA, Mitochondrial/analysis , Haplotypes , Lizards/classification , Sequence Analysis, DNA , Toes/anatomy & histology
13.
Mol Ecol ; 15(1): 191-207, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16367840

ABSTRACT

Contemporary North American drainage basins are composites of formerly isolated drainages, suggesting that fragmentation and fusion of palaeodrainage systems may have been an important factor generating current patterns of genetic and species diversity in stream-associated organisms. Here, we combine traditional molecular-phylogenetic, multiple-regression, nested clade, and molecular-demographic analyses to investigate the relationship between phylogeographic variation and the hydrogeological history of eastern North American drainage basins in semiaquatic plethodontid salamanders of the Eurycea bislineata species complex. Four hundred forty-two sequences representing 1108 aligned bases from the mitochondrial genome are reported for the five formally recognized species of the E. bislineata complex and three outgroup taxa. Within the in-group, 270 haplotypes are recovered from 144 sampling locations. Geographic patterns of mtDNA-haplotype coalescence identify 13 putatively independent population-level lineages, suggesting that the current taxonomy of the group underestimates species-level diversity. Spatial and temporal patterns of phylogeographic divergence are strongly associated with historical rather than modern drainage connections, indicating that shifts in major drainage patterns played a pivotal role in the allopatric fragmentation of populations and build-up of lineage diversity in these stream-associated salamanders. More generally, our molecular genetic results corroborate geological and faunistic evidence suggesting that palaeodrainage connections altered by glacial advances and headwater erosion occurring between the mid-Miocene and Pleistocene epochs explain regional patterns of biodiversity in eastern North American streams.


Subject(s)
Environment , Genetic Variation , Phylogeny , Rivers , Urodela/genetics , Animals , Base Sequence , Bayes Theorem , DNA Primers , DNA, Mitochondrial/genetics , Geography , Haplotypes/genetics , Models, Genetic , Molecular Sequence Data , North America , Regression Analysis , Sequence Analysis, DNA , Species Specificity
14.
Genome Biol ; 7(8): R75, 2006.
Article in English | MEDLINE | ID: mdl-26271136

ABSTRACT

BACKGROUND: Codon usage has direct utility in molecular characterization of species and is also a arker for molecular evolution. To understand codon usage within the diverse phylum Nematoda,we analyzed a total of 265,494 expressed sequence tags (ESTs) from 30 nematode species. The full genomes of Caenorhabditis elegans and C. briggsae were also examined. A total of 25,871,325 codons ere analyzed and a comprehensive codon usage table for all species was generated. This is the first codon usage table available for 24 of these organisms. RESULTS: Codon usage similarity in Nematoda usually persists over the breadth of a genus but thenrapidly diminishes even within each clade. Globodera, Meloidogyne, Pristionchus, and Strongyloides have the most highly derived patterns of codon usage. The major factor affecting differences in codon usage between species is the coding sequence GC content, which varies in nematodes from 32%to 51%. Coding GC content (measured as GC3) also explains much of the observed variation in the effective number of codons (R = 0.70), which is a measure of codon bias, and it even accounts for differences in amino acid frequency. Codon usage is also affected by neighboring nucleotides(N1 context). Coding GC content correlates strongly with estimated noncoding genomic GC content (R = 0.92). On examining abundant clusters in five species, candidate optimal codons were identified that may be preferred in highly expressed transcripts. CONCLUSION: Evolutionary models indicate that total genomic GC content, probably the product of directional mutation pressure, drives codon usage rather than the converse, a conclusion that is supported by examination of nematode genomes.


Subject(s)
Codon , Helminth Proteins/genetics , Nematoda/classification , Nematoda/genetics , Animals , Base Composition , Caenorhabditis/genetics , Caenorhabditis elegans/genetics , Expressed Sequence Tags , Helminth Proteins/chemistry , Phylogeny
15.
Evolution ; 59(9): 2000-16, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16261737

ABSTRACT

An important dimension of adaptive radiation is the degree to which diversification rates fluctuate or remain constant through time. Focusing on plethodontid salamanders of the genus Desmognathus, we present a novel synthetic analysis of phylogeographic history, rates of ecomorphological evolution and species accumulation, and community assembly in an adaptive radiation. Dusky salamanders are highly variable in life history, body size, and ecology, with many endemic lineages in the southern Appalachian Highlands of eastern North America. Our results show that life-history evolution had important consequences for the buildup of plethodontid-salamander species richness and phenotypic disparity in eastern North America, a global hot spot of salamander biodiversity. The origin of Desmognathus species with aquatic larvae was followed by a high rate of lineage accumulation, which then gradually decreased toward the present time. The peak period of lineage accumulation in the group coincides with evolutionary partitioning of lineages with aquatic larvae into seepage, stream-edge, and stream microhabitats. Phylogenetic simulations demonstrate a strong correlation between morphology and microhabitat ecology independent of phylogenetic effects and suggest that ecomorphological changes are concentrated early in the radiation of Desmognathus. Deep phylogeographic fragmentation within many codistributed ecomorph clades suggests long-term persistence of ecomorphological features and stability of endemic lineages and communities through multiple climatic cycles. Phylogenetic analyses of community structure show that ecomorphological divergence promotes the coexistence of lineages and that repeated, independent evolution of microhabitat-associated ecomorphs has a limited role in the evolutionary assembly of Desmognathus communities. Comparing and contrasting our results to other adaptive radiations having different biogeographic histories, our results suggest that rates of diversification during adaptive radiation are intimately linked to the degree to which community structure persists over evolutionary time.


Subject(s)
Adaptation, Biological/genetics , Environment , Phylogeny , Urodela/anatomy & histology , Urodela/genetics , Animals , Base Sequence , Bayes Theorem , DNA Primers , DNA, Mitochondrial/genetics , Geography , Models, Genetic , Molecular Sequence Data , Principal Component Analysis , Sequence Analysis, DNA , Species Specificity , United States
16.
Syst Biol ; 54(5): 758-77, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16243763

ABSTRACT

Phylogenetic relationships among salamander families illustrate analytical challenges inherent to inferring phylogenies in which terminal branches are temporally very long relative to internal branches. We present new mitochondrial DNA sequences, approximately 2,100 base pairs from the genes encoding ND1, ND2, COI, and the intervening tRNA genes for 34 species representing all 10 salamander families, to examine these relationships. Parsimony analysis of these mtDNA sequences supports monophyly of all families except Proteidae, but yields a tree largely unresolved with respect to interfamilial relationships and the phylogenetic positions of the proteid genera Necturus and Proteus. In contrast, Bayesian and maximum-likelihood analyses of the mtDNA data produce a topology concordant with phylogenetic results from nuclear-encoded rRNA sequences, and they statistically reject monophyly of the internally fertilizing salamanders, suborder Salamandroidea. Phylogenetic simulations based on our mitochondrial DNA sequences reveal that Bayesian analyses outperform parsimony in reconstructing short branches located deep in the phylogenetic history of a taxon. However, phylogenetic conflicts between our results and a recent analysis of nuclear RAG-1 gene sequences suggest that statistical rejection of a monophyletic Salamandroidea by Bayesian analyses of our mitochondrial genomic data is probably erroneous. Bayesian and likelihood-based analyses may overestimate phylogenetic precision when estimating short branches located deep in a phylogeny from data showing substitutional saturation; an analysis of nucleotide substitutions indicates that these methods may be overly sensitive to a relatively small number of sites that show substitutions judged uncommon by the favored evolutionary model.


Subject(s)
Phylogeny , Research Design , Urodela/genetics , Animals , Base Sequence , Bayes Theorem , Computer Simulation , DNA Primers , DNA, Mitochondrial/genetics , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Sequence Analysis, DNA
17.
Mol Ecol ; 14(8): 2419-32, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15969724

ABSTRACT

Overwater dispersal and subsequent allopatric speciation contribute importantly to the species diversity of West Indian Anolis lizards and many other island radiations. Here we use molecular phylogenetic analyses to assess the contribution of overwater dispersal to diversification of the Anolis carolinensis subgroup, a clade comprising nine canopy-dwelling species distributed across the northern Caribbean. Although this clade includes some of the most successful dispersers and colonists in the anole radiation, the taxonomic status and origin of many endemic populations have been ambiguous. New mitochondrial and nuclear DNA sequences from four species occurring on small islands or island banks (Anolis brunneus, Anolis longiceps, Anolis maynardi, Anolis smaragdinus) and one species from the continental United States (A. carolinensis) are presented and analysed with homologous sequences sampled from related species on Cuba (Anolis allisoni and Anolis porcatus). Our analyses confirm that all five non-Cuban species included in our study represent distinct, independently evolving lineages that warrant continued species recognition. Moreover, our results support Ernest Williams's hypothesis that all of these species originated by overseas colonization from Cuban source populations. However, contrary to Williams's hypothesis of Pleistocene dispersal, most colonization events leading to speciation apparently occurred earlier, in the late Miocene-Pliocene. These patterns suggest that overwater dispersal among geologically distinct islands and island banks is relatively infrequent in anoles and has contributed to allopatric speciation. Finally, our results suggest that large Greater Antillean islands serve as centres of origin for regional species diversity.


Subject(s)
Demography , Lizards/genetics , Phylogeny , Animals , Base Sequence , Bayes Theorem , DNA, Mitochondrial/genetics , Geography , Models, Genetic , Molecular Sequence Data , Population Dynamics , Rhodopsin/genetics , Sequence Analysis, DNA , Species Specificity , West Indies
18.
Proc Biol Sci ; 271(1554): 2257-65, 2004 Nov 07.
Article in English | MEDLINE | ID: mdl-15539351

ABSTRACT

Sympatric speciation is often proposed to account for species-rich adaptive radiations within lakes or islands, where barriers to gene flow or dispersal may be lacking. However, allopatric speciation may also occur in such situations, especially when ranges are fragmented by fluctuating water levels. We test the hypothesis that Miocene fragmentation of Cuba into three palaeo-archipelagos accompanied species-level divergence in the adaptive radiation of West Indian Anolis lizards. Analysis of morphology, mitochondrial DNA (mt DNA) and nuclear DNA in the Cuban green anoles (carolinensis subgroup) strongly supports three pre dictions made by this hypothesis. First, three geographical sets of populations, whose ranges correspond with palaeo-archipelago boundaries, are distinct and warrant recognition as independent evolutionary lineages or species. Coalescence of nuclear sequence fragments sampled from these species and the large divergences observed between their mtDNA haplotypes suggest separation prior to the subsequent unification of Cuba ca. 5 Myr ago. Second, molecular phylogenetic relationships among these species reflect historical geographical relationships rather than morphological similarity. Third, all three species remain distinct despite extensive geographical contact subsequent to island unification, occasional hybridization and introgression of mtDNA haplotypes. Allopatric speciation initiated during partial island submergence may play an important role in speciation during the adaptive radiation of Anolis lizards.


Subject(s)
Demography , Genetics, Population , Lizards/anatomy & histology , Lizards/genetics , Phylogeny , Animals , Base Sequence , Bayes Theorem , Body Weights and Measures , Cuba , DNA, Mitochondrial/genetics , Geography , Geological Phenomena , Geology , Models, Genetic , Molecular Sequence Data , Pigmentation/physiology , Rhodopsin/genetics , Sequence Analysis, DNA , Species Specificity
19.
Syst Biol ; 53(5): 735-57, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15545252

ABSTRACT

Squamate reptiles (snakes, lizards, and amphisbaenians) serve as model systems for evolutionary studies of a variety of morphological and behavioral traits, and phylogeny is crucial to many generalizations derived from such studies. Specifically, the traditional dichotomy between Iguania (anoles, iguanas, chameleons, etc.) and Scleroglossa (skinks, geckos, snakes, etc.) has been correlated with major evolutionary shifts within Squamata. We present a molecular phylogenetic study of 69 squamate species using approximately 4600 (2876 parsimony-informative) base pairs (bp) of DNA sequence data from the nuclear genes RAG-1(approximately 2750 bp) and c-mos(approximately 360 bp) and the mitochondrial ND2 region (approximately 1500 bp), sampling all major clades and most major subclades. Under our hypothesis, species previously placed in Iguania, Anguimorpha, and almost all recognized squamate families form strongly supported monophyletic groups. However, species previously placed in Scleroglossa, Varanoidea, and several other higher taxa do not form monophyletic groups. Iguania, the traditional sister group of Scleroglossa, is actually highly nested within Scleroglossa. This unconventional rooting does not seem to be due to long-branch attraction, base composition biases among taxa, or convergence caused by similar selective forces acting on nonsister taxa. Studies of functional tongue morphology and feeding mode have contrasted the similar states found in Sphenodon(the nearest outgroup to squamates) and Iguania with those of Scleroglossa, but our findings suggest that similar states in Sphenodonand Iguania result from homoplasy. Snakes, amphisbaenians, and dibamid lizards, limbless forms whose phylogenetic positions historically have been impossible to place with confidence, are not grouped together and appear to have evolved this condition independently. Amphisbaenians are the sister group of lacertids, and dibamid lizards diverged early in squamate evolutionary history. Snakes are grouped with iguanians, lacertiforms, and anguimorphs, but are not nested within anguimorphs.


Subject(s)
Phylogeny , Reptiles/classification , Reptiles/genetics , Animals , Base Composition , Base Sequence , Bayes Theorem , Computer Simulation , DNA Primers , DNA, Mitochondrial/genetics , Genes, RAG-1/genetics , Genes, mos/genetics , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA , Species Specificity
20.
Nature ; 431(7005): 177-81, 2004 Sep 09.
Article in English | MEDLINE | ID: mdl-15356629

ABSTRACT

A genetic paradox exists in invasion biology: how do introduced populations, whose genetic variation has probably been depleted by population bottlenecks, persist and adapt to new conditions? Lessons from conservation genetics show that reduced genetic variation due to genetic drift and founder effects limits the ability of a population to adapt, and small population size increases the risk of extinction. Nonetheless, many introduced species experiencing these same conditions during initial introductions persist, expand their ranges, evolve rapidly and become invasive. To address this issue, we studied the brown anole, a worldwide invasive lizard. Genetic analyses indicate that at least eight introductions have occurred in Florida from across this lizard's native range, blending genetic variation from different geographic source populations and producing populations that contain substantially more, not less, genetic variation than native populations. Moreover, recently introduced brown anole populations around the world originate from Florida, and some have maintained these elevated levels of genetic variation. Here we show that one key to invasion success may be the occurrence of multiple introductions that transform among-population variation in native ranges to within-population variation in introduced areas. Furthermore, these genetically variable populations may be particularly potent sources for introductions elsewhere. The growing problem of invasive species introductions brings considerable economic and biological costs. If these costs are to be mitigated, a greater understanding of the causes, progression and consequences of biological invasions is needed.


Subject(s)
Environment , Genetic Variation/genetics , Lizards/genetics , Lizards/physiology , Animal Migration , Animals , Bayes Theorem , Body Constitution , Caribbean Region , Cuba , DNA, Mitochondrial/genetics , Florida , Founder Effect , Geography , Haplotypes/genetics , Hawaii , Phylogeny , Population Dynamics , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...