Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Conserv Physiol ; 11(1): coad045, 2023.
Article in English | MEDLINE | ID: mdl-37405172

ABSTRACT

Many migratory fishes are thought to navigate to natal streams using olfactory cues learned during early life stages. However, direct evidence for early-life olfactory imprinting is largely limited to Pacific salmon, and other species suspected to imprint show life history traits and reproductive strategies that raise uncertainty about the generality of the salmonid-based conceptual model of olfactory imprinting in fishes. Here, we studied early-life olfactory imprinting in lake sturgeon (Acipenser fulvescens), which have a life cycle notably different from Pacific salmon, but are nonetheless hypothesized to home via similar mechanisms. We tested one critical prediction of the hypothesis that early-life olfactory imprinting guides natal homing in lake sturgeon: that exposure to odorants during early-life stages results in increased activity when exposed to those odorants later in life. Lake sturgeon were exposed to artificial odorants (phenethyl alcohol and morpholine) during specific developmental windows and durations (limited to the egg, free-embryo, exogenous feeding larvae and juvenile stages), and later tested as juveniles for behavioral responses to the odorants that were demonstrative of olfactory memory. Experiments revealed that lake sturgeon reared in stream water mixed with artificial odorants for as little as 7 days responded to the odorants in behavioral assays over 50 days after the initial exposure, specifically implicating the free-embryo and larval stages as critical imprinting periods. Our study provides evidence for olfactory imprinting in a non-salmonid fish species, and supports further consideration of conservation tactics such as stream-side rearing facilities that are designed to encourage olfactory imprinting to targeted streams during early life stages. Continued research on lake sturgeon can contribute to a model of olfactory imprinting that is more generalizable across diverse fish species and will inform conservation actions for one of the world's most imperiled fish taxonomic groups.

2.
Animals (Basel) ; 12(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36496751

ABSTRACT

The lake sturgeon (Acipenser fulvescens; LST) is the only native sturgeon species in the Great Lakes (GL), but due to multiple factors, their current populations are estimated to be <1% of historical abundances. Little is known about infectious diseases affecting GL-LST in hatchery and wild settings. Therefore, a two-year disease surveillance study was undertaken, resulting in the detection and first in vitro isolation of a herpesvirus from grossly apparent cutaneous lesions in wild adult LST inhabiting two GL watersheds (Erie and Huron). Histological and ultrastructural examination of lesions revealed proliferative epidermitis associated with herpesvirus-like virions. A virus with identical ultrastructural characteristics was recovered from cells inoculated with lesion tissues. Partial DNA polymerase gene sequencing placed the virus within the Family Alloherpesviridae, with high similarity to a lake sturgeon herpesvirus (LSHV) from Wisconsin, USA. Genomic comparisons revealed ~84% Average Nucleotide Identity between the two isolates, leading to the proposed classification of LSHV-1 (Wisconsin) and LSHV-2 (Michigan) for the two viruses. When naïve juvenile LST were immersion-exposed to LSHV-2, severe disease and ~33% mortality occurred, with virus re-isolated from representative skin lesions, fulfilling Rivers' postulates. Results collectively show LSHV-2 is associated with epithelial changes in wild adult LST, disease and mortality in juvenile LST, and is a potential threat to GL-LST conservation.

3.
PLoS One ; 17(11): e0277336, 2022.
Article in English | MEDLINE | ID: mdl-36409729

ABSTRACT

Documentation of how interactions among members of different stream communities [e.g., microbial communities and aquatic insect taxa exhibiting different feeding strategies (FS)] collectively influence the growth, survival, and recruitment of stream fishes is limited. Considerable spatial overlap exists between early life stages of stream fishes, including species of conservation concern like lake sturgeon (Acipenser fulvescens), and aquatic insects and microbial taxa that abundantly occupy substrates on which spawning occurs. Habitat overlap suggests that species interactions across trophic levels may be common, but outcomes of these interactions are poorly understood. We conducted an experiment where lake sturgeon eggs were fertilized and incubated in the presence of individuals from one of four aquatic insect FS taxa including predators, facultative and obligate-scrapers, collector-filterers/facultative predators, and a control (no insects). We quantified and compared the effects of different insect taxa on the taxonomic composition and relative abundance of egg surface bacterial and lower eukaryotic communities, egg size, incubation time to hatch, free embryo body size (total length) at hatch, yolk-sac area, (a measure of resource utilization), and percent survival to hatch. Mean egg size varied significantly among insect treatments. Eggs exposed to predators had a lower mean percent survival to hatch. Eggs exposed to predators had significantly shorter incubation periods. At hatch, free embryos exposed to predators had significantly smaller yolk sacs and total length. Multivariate analyses revealed that egg bacterial and lower eukaryotic surface community composition varied significantly among insect treatments and between time periods (1 vs 4 days post-fertilization). Quantitative PCR documented significant differences in bacterial 16S copy number, and thus abundance on egg surfaces varied across insect treatments. Results indicate that lethal and non-lethal effects associated with interactions between lake sturgeon eggs and free embryos and aquatic insects, particularly predators, contributed to lake sturgeon trait variability that may affect population levels of recruitment.


Subject(s)
Insecta , Microbiota , Animals , Larva , Fishes , Phenotype , Eukaryota
4.
J Aquat Anim Health ; 32(3): 116-126, 2020 09.
Article in English | MEDLINE | ID: mdl-32298497

ABSTRACT

Bacterial kidney disease, caused by Renibacterium salmoninarum (RS), is a chronic and often fatal disease of salmonid species, and can be particularly harmful to hatchery-reared Chinook Salmon Oncorhynchus tshawytscha. A considerable amount of research has focused on the prevention of vertical and horizontal transmission; however, a comparatively little amount has investigated factors that increase the prevalence of RS infection in captive environments. We evaluated the effects of three common hatchery conditions (handling, nutrition level, and rearing density) on RS infection prevalence. Fish were sampled at 30-d and 60-d postexposure to RS. Of 577 juveniles examined, 65 (11.27%) had anterior kidneys infected with RS. Using a logistic mixed model analysis, we found effects of nutrition level (P = 0.018), handling (P = 0.010), and sampling period (P = 0.003) on the prevalence of RS. The interactions of nutrition and handling (P = 0.008) and nutrition and time (P < 0.001) were also significant. When fed a standard-nutrition diet, proportionately fewer fish were infected with RS when not handled (7.16% versus 0.04%; P = 0.003). Fish in the standard-nutrition group also had a lower prevalence of RS during the second sampling period (4.08% versus 0.08%, respectively; P < 0.001). When not handled, rearing with standard nutrition (11.50% versus 0.04%; P = 0.004) resulted in a reduction in prevalence of RS infection. Additionally, nonhandled fish had a much lower prevalence of RS infection during the second sampling period (2.66% versus 0.21%; P = 0.009). While density did not affect the prevalence of RS infection (P = 0.145), fish reared at a higher density had lower RS infection when not handled (16.48% versus 0.84%, P = 0.004). For fish at a higher density, the RS prevalence was lower during the second sampling period (10.57% versus 1.40%; P = 0.002). Our results suggest that hatchery managers can reduce RS infection prevalence by maintaining an adequate nutritional regime as recommended by the manufacturer. Additionally, the prevalence of RS may be reduced if managers decrease handling of hatchery-reared Chinook Salmon if exposed to RS.


Subject(s)
Aquaculture/methods , Fish Diseases/epidemiology , Gram-Positive Bacterial Infections/veterinary , Salmon , Animal Nutritional Physiological Phenomena , Animals , Fish Diseases/microbiology , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Michigan , Population Density , Prevalence , Renibacterium/physiology , Salmon/physiology
6.
AJR Am J Roentgenol ; 208(6): 1285-1296, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28350484

ABSTRACT

OBJECTIVE: The purpose of this study was to conduct longitudinal analyses of radiation dose data from adult patients undergoing clinically indicated, repeat identical thoracoabdominal CT examinations. MATERIALS AND METHODS: Radiation dose data were electronically collected from 2851 subjects undergoing 12,635 repeat identical CT scans (mean number of scans per patient, 4.8; range, 2-33) in one health system. Included CT protocols were chest-abdomen-pelvis with contrast administration (n = 4621 CT studies of 1064 patients), abdomen-pelvis with contrast administration (n = 876 CT studies of 261 patients), renal stone (n = 1053 CT studies of 380 patients), and chest (n = 6085 CT studies of 1146 patients) without contrast administration. A radiation-tracking software infrastructure was adopted to extract data from DICOM headers in PACS. Size-specific dose estimate (SSDE) was calculated. RESULTS: A trend was observed toward global reduction in SSDE values with all protocols investigated (chest-abdomen-pelvis slope, -1.78; abdomen-pelvis slope, -0.82; renal stone slope, -0.83; chest slope, -0.47; p < 0.001 for all comparisons). The intraindividual analyses of radiation dose distribution showed widespread variability in SSDE values across the four protocols investigated (chest-abdomen-pelvis mean coefficient of variance, 14.02 mGy; abdomen-pelvis mean coefficient of variance, 10.26 mGy; renal stone mean coefficient of variance, 34.18 mGy; chest mean coefficient of variance, 6.74 mGy). CONCLUSION: Although there is a trend toward global reduction in radiation doses, this study showed widespread variability in the radiation dose that each patient undergoing identical repeat thoracoabdominal CT protocols absorbs. These data may provide a foundation for the future development of best-practice guidelines for patient-specific radiation dose monitoring.


Subject(s)
Academic Medical Centers/statistics & numerical data , Radiation Dosage , Radiation Exposure/statistics & numerical data , Radiography, Abdominal/statistics & numerical data , Radiography, Thoracic/statistics & numerical data , Tomography, X-Ray Computed/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Longitudinal Studies , Male , Middle Aged , North Carolina/epidemiology , Radiometry/statistics & numerical data , Reproducibility of Results , Sensitivity and Specificity , Young Adult
7.
Artif Organs ; 41(7): E52-E65, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27935084

ABSTRACT

With the growth and diversity of mechanical circulatory support (MCS) systems entering clinical use, a need exists for a robust mock circulation system capable of reliably emulating and reproducing physiologic as well as pathophysiologic states for use in MCS training and inter-device comparison. We report on the development of such a platform utilizing the SynCardia Total Artificial Heart and a modified Donovan Mock Circulation System, capable of being driven at normal and reduced output. With this platform, clinically relevant heart failure hemodynamics could be reliably reproduced as evidenced by elevated left atrial pressure (+112%), reduced aortic flow (-12.6%), blunted Starling-like behavior, and increased afterload sensitivity when compared with normal function. Similarly, pressure-volume relationships demonstrated enhanced sensitivity to afterload and decreased Starling-like behavior in the heart failure model. Lastly, the platform was configured to allow the easy addition of a left ventricular assist device (HeartMate II at 9600 RPM), which upon insertion resulted in improvement of hemodynamics. The present configuration has the potential to serve as a viable system for training and research, aimed at fostering safe and effective MCS device use.


Subject(s)
Computer Simulation , Heart Failure/physiopathology , Heart, Artificial , Heart/physiopathology , Hemodynamics , Models, Cardiovascular , Atrial Pressure , Equipment Design , Heart-Assist Devices , Humans , Ventricular Function, Left
8.
Springerplus ; 5(1): 738, 2016.
Article in English | MEDLINE | ID: mdl-27376006

ABSTRACT

Transmyocardial revascularization (TMR) has emerged as an additional therapeutic option for patients suffering from diffuse coronary artery disease (CAD), providing immediate angina relief. Recent studies indicate that the volume of surgical cases being performed with TMR have been steadily rising, utilizing TMR as an adjunctive therapy. Therefore the purpose of this review is to provide an up-to-date appreciation of the current state of TMR and its future developmental directions on CAD treatment. The current potential of this therapy focuses on the implementation of stem cells, in order to create a synergistic angiogenic effect while increasing myocardial repair and regeneration. Although TMR procedures provide increased vascularization within the myocardium, patients suffering from ischemic cardiomyopathy may not benefit from angiogenesis alone. Therefore, the goal of introducing stem cells is to restore the functional state of a failing heart by providing these cells with a favorable microenvironment that will enhance stem cell engraftment.

9.
Perfusion ; 31(2): 111-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26220358

ABSTRACT

INTRODUCTION: The Thoratec Corporation has over 10,000 patients registered as recipients of the HeartMate II left ventricular assist device (LVAD) worldwide. Although it has undoubtedly prolonged the lifespan of heart failure patients, the most recognized risk associated with these devices is the development of thrombus. In the presence of a small or developing clot, the HeartMate II display module and system monitor indicate that there is a decrease in pump flow, adjusts its pump power and is accompanied by audible and visual alarms when flow rates drop below a fixed threshold established by Thoratec. In contrast, when thrombus completely inhibits flow through the device, the display module and system monitor have failed in previous case studies to indicate that flow has reduced to zero and do not produce any corresponding alarms. METHODS: To test the efficacy of the HeartMate II alarms, a cardiovascular simulation tank was used to reproduce the hemodynamics of a typical heart failure patient. The hemodynamics were then improved by the addition of the HeartMate II LVAD and different partial and complete occlusions were applied to the inlet and outlet of the HeartMate II pump. CONCLUSIONS: Partially occluding the inflow and/or outflow of the HeartMate II did display changes in flow and presented with alarms when flow was estimated to be below 2.5 L/min; however, complete occlusion of the inflow and/or outflow failed to produce any alarms or accurately measured changes in flow.


Subject(s)
Computer Simulation , Heart-Assist Devices , Models, Cardiovascular , Blood Flow Velocity , Humans
10.
Front Physiol ; 6: 235, 2015.
Article in English | MEDLINE | ID: mdl-26379554

ABSTRACT

The immune system is suggested to be essential in vascular remodeling and stiffening. To study the dependence upon lymphocytes in vascular stiffening, we compared an angiotensin II-model of vascular stiffening in normal C57BL/6J mice with lymphocyte-deficient RAG 1(-/-) mice and additionally characterized the component of vascular stiffness due to vasoconstriction vs. vascular remodeling. Chronic angiotensin II increased aortic pulse wave velocity, effective wall stiffness, and effective Young's modulus in C57BL/6J mice by three-fold but caused no change in the RAG 1(-/-) mice. These functional measurements were supported by aortic morphometric analysis. Adoptive transfer of CD4(+) T helper lymphocytes restored the angiotensin II-mediated aortic stiffening in the RAG 1(-/-) mice. In order to account for the hydraulic vs. material effects of angiotensin II on pulse wave velocity, subcutaneous osmotic pumps were removed after 21 days of angiotensin II-infusion in the WT mice to achieve normotensive values. The pulse wave velocity (PWV) decreased from three- to two-fold above baseline values up to 7 days following pump removal. This study supports the pivotal role of the CD4(+) T-lymphocytes in angiotensin II-mediated vascular stiffening and that angiotensin II-mediated aortic stiffening is due to the additive effect of active vascular smooth muscle vasoconstriction and vascular remodeling.

11.
PLoS One ; 10(4): e0124013, 2015.
Article in English | MEDLINE | ID: mdl-25875748

ABSTRACT

It is well accepted that angiotensin II (Ang II) induces altered vascular stiffness through responses including both structural and material remodeling. Concurrent with remodeling is the induction of the enzyme lysyl oxidase (LOX) through which ECM proteins are cross-linked. The study objective was to determine the effect of LOX mediated cross-linking on vascular mechanical properties. Three-month old mice were chronically treated with Ang II with or without the LOX blocker, ß -aminopropionitrile (BAPN), for 14 days. Pulse wave velocity (PWV) from Doppler measurements of the aortic flow wave was used to quantify in vivo vascular stiffness in terms of an effective Young's modulus. The increase in effective Young's modulus with Ang II administration was abolished with the addition of BAPN, suggesting that the material properties are a major controlling element in vascular stiffness. BAPN inhibited the Ang II induced collagen cross-link formation by 2-fold and PWV by 44% (P<0.05). Consistent with this observation, morphometric analysis showed that BAPN did not affect the Ang II mediated increase in medial thickness but significantly reduced the adventitial thickness. Since the hypertensive state contributes to the measured in vivo PWV stiffness, we removed the Ang II infusion pumps on Day 14 and achieved normal arterial blood pressures. With pump removal we observed a decrease of the PWV in the Ang II group to 25% above that of the control values (P=0.002), with a complete return to control values in the Ang II plus BAPN group. In conclusion, we have shown that the increase in vascular stiffness with 14 day Ang II administration results from a combination of hypertension-induced wall strain, adventitial wall thickening and Ang II mediated LOX ECM cross-linking, which is a major material source of vascular stiffening, and that the increased PWV was significantly inhibited with co-administration of BAPN.


Subject(s)
Aminopropionitrile/pharmacology , Angiotensin II/pharmacology , Aorta/drug effects , Hypertension/drug therapy , Protein-Lysine 6-Oxidase/antagonists & inhibitors , Vascular Remodeling/drug effects , Vascular Stiffness/drug effects , Animals , Aorta/enzymology , Blood Pressure/drug effects , Hypertension/chemically induced , Hypertension/enzymology , Male , Mice , Mice, Inbred C57BL , Pulse Wave Analysis , Vasoconstrictor Agents/pharmacology
12.
ASAIO J ; 61(3): 274-81, 2015.
Article in English | MEDLINE | ID: mdl-25551416

ABSTRACT

The SynCardia total artificial heart (TAH) has emerged as an effective, life-saving biventricular replacement system for a wide variety of patients with end-stage heart failure. Although the clinical performance of the TAH is established, modern physiological characterization, in terms of elastance behavior and pressure-volume (PV) characterization has not been defined. Herein, we examine the TAH in terms of elastance using a nonejecting left ventricle, and then characterize the PV relation of the TAH by varying preload and afterload parameters using a Donovan Mock Circulatory System. We demonstrate that the TAH does not operate with time-varying elastance, differing from the human heart. Furthermore, we show that the TAH has a PV relation behavior that also differs from that of the human heart. The TAH does exhibit Starling-like behavior, with output increasing via preload-dependent mechanisms, without reliance on an alteration of inotropic state within the operating window of the TAH. Within our testing range, the TAH is insensitive to variations in afterload; however, this insensitivity has a limit, the limit being the maximum driving pressure of the pneumatic driver. Understanding the physiology of the TAH affords insight into the functional parameters that govern artificial heart behavior providing perspective on differences compared with the human heart.


Subject(s)
Heart, Artificial , Hemodynamics , Models, Cardiovascular , Humans
13.
Radiology ; 274(1): 141-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25162310

ABSTRACT

PURPOSE: To determine, in a dual-center setting, whether patients who experience transient severe motion ( TSM transient severe motion ) in the arterial phase during gadoxetate disodium-enhanced magnetic resonance (MR) imaging are at higher risk for a subsequent episode of TSM transient severe motion than patients who do not have TSM transient severe motion during initial gadoxetate disodium administration. MATERIALS AND METHODS: Institutional review board approval was obtained for this retrospective, multi-institutional HIPAA-compliant study. The requirement for informed consent was waived. One hundred seventy patients each underwent two MR imaging examinations with bolus injection of gadoxetate disodium at one of two sites. Three radiologists reviewed the examinations at each site for TSM transient severe motion , based on severe arterial phase motion, despite minimal motion in the other dynamic phases. The occurrence rate of TSM transient severe motion in the second examination was compared between patients who had TSM transient severe motion in their first examination and those who did not by using the χ(2) or Fisher exact test, as appropriate. Relative risks and 95% confidence intervals ( CI confidence interval s) were calculated. RESULTS: TSM transient severe motion rates in second examinations were significantly higher for patients who had TSM transient severe motion in their first examination: site 1, 67% (six of nine) vs 4% (three of 69) (P < .0001); site 2, 60% (three of five) vs 6% (five of 87) (P < .005); and both sites, 64% (nine of 14) vs 5% (eight of 156) (P < .0001). Relative risks were 15 for site 1 (95% CI confidence interval : 5, 51), 10 for site 2 (95% CI confidence interval : 3, 32), and 13 for both sites (95% CI confidence interval : 6, 27). CONCLUSION: Patients who experience TSM transient severe motion during gadoxetate disodium-enhanced MR imaging are at significantly and substantially higher risk for TSM transient severe motion in the next gadoxetate disodium-enhanced examination compared with patients who do not have TSM transient severe motion during their initial gadoxetate disodium administration.


Subject(s)
Abdomen , Artifacts , Gadolinium DTPA , Magnetic Resonance Imaging/methods , Respiration , Adult , Aged , Aged, 80 and over , Contrast Media , Female , Humans , Male , Meglumine/analogs & derivatives , Middle Aged , Motion , Organometallic Compounds , Retrospective Studies
14.
Cardiovasc Drugs Ther ; 28(6): 541-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25319313

ABSTRACT

PURPOSE: Dodecafluoropentane emulsion (DDFPe) is a perfluorocarbon with high oxygen dissolving, transport, and delivery capacity that may offer the potential to limit ischemic injury prior to clinical reperfusion. Here we investigated the cardiac protective potential of DDFPe in a mouse model of myocardial infarction. METHODS: Myocardial infarction was initiated by permanent ligation of the left anterior descending (LAD) coronary artery. Mice were administered vehicle or 5-hydroxydecanoate (5-HD) intravenously 10 min before LAD occlusion followed by a single intravenous administration of vehicle or DDFPe immediately after occlusion. Heart tissue and serum samples were collected 24 after LAD occlusion for measurement of infarct size and cardiac troponin I (cTnI) levels, respectively. RESULTS: DDFPe treatment reduced infarct size by approximately 72% (36.9 ± 4.2% for vehicle vs 10.4 ± 2.3% for DDFPe; p < 0.01; n = 6-8) at 24 h. Serum cTnI levels were similarly reduced by DDFPe (35.0 ± 4.6 ng/ml for vehicle vs 15.8 ± 1.6 ng/ml for DDFPe; p < 0.01; n = 6-8). Pretreatment with 5-HD, a mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) inhibitor, blocked the reduction in infarct size (29.2 ± 4.4% for 5-HD vs 35.4 ± 7.4% for 5-HD+DDFPe; p = 0.48; n = 6-8) and serum cTnI levels (27.4 ± 5.1 ng/ml for 5-HD vs 34.6 ± 5.3 ng/ml for 5-HD+DDFPe; p = 0.86; n = 6-8) by DDFPe. CONCLUSION: Our data indicate a cardiac protective role of DDFPe that persists beyond its retention time in the body and is dependent on mitoK(ATP), an important mediator of ischemic preconditioning induced cardiac protection.


Subject(s)
Fluorocarbons/pharmacology , Heart/drug effects , KATP Channels/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Adenosine Triphosphate/metabolism , Animals , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Decanoic Acids/pharmacology , Hydroxy Acids/pharmacology , Male , Mice , Mice, Inbred C57BL , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism
15.
Int J Hypertens ; 2014: 126365, 2014.
Article in English | MEDLINE | ID: mdl-25258681

ABSTRACT

Adaptive immune function is implicated in the pathogenesis of vascular disease. Inhibition of T-lymphocyte function has been shown to reduce hypertension, target-organ damage, and vascular stiffness. To study the role of immune inhibitory cells, CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs), on vascular stiffness, we stimulated the proliferation of Treg lymphocytes in vivo using a novel cytokine immune complex of Interleukin-2 (IL-2) and anti-IL-2 monoclonal antibody clone JES6-1 (mAbCD25). Three-month-old male C57BL/6J mice were treated with IL-2/mAbCD25 concomitantly with continuous infusion of angiotensin type 1 receptor agonist, [Val(5)]angiotensin II. Our results indicate that the IL-2/mAbCD25 complex effectively induced Treg phenotype expansion by 5-fold in the spleens with minimal effects on total CD4(+) and CD8(+) T-lymphocyte numbers. The IL-2/mAbCD25 complex inhibited angiotensin II-mediated aortic collagen remodeling and the resulting stiffening, analyzed with in vivo pulse wave velocity and effective Young's modulus. Furthermore, the IL-2/mAbCD25 complex suppressed angiotensin II-mediated Th17 responses in the lymphoid organs and reduced gene expression of IL-17 as well as T cell and macrophage infiltrates in the aortic tissue. This study provides data that support the protective roles of Tregs in vascular stiffening and highlights the use of the IL-2/mAbCD25 complex as a new potential therapy in angiotensin II-related vascular diseases.

16.
PLoS One ; 8(4): e60580, 2013.
Article in English | MEDLINE | ID: mdl-23593252

ABSTRACT

BACKGROUND: Diastolic dysfunction is the hemodynamic hallmark of hypertensive heart disease. Tau (τ) has been used to describe left ventricle relaxation. The relationship between τ and afterload has been controversial. Our goal was to demonstrate this relationship in mice, because genetically-modified mouse models have been used extensively for studies in cardiovascular diseases. METHODS: Increased arterial load was produced by phenylephrine administration (50 µg/kg iv) (n = 10). A series of pressure-volume loops was recorded with a Millar conductance catheter in vivo as the left ventricle pressure reached the maximum. The arterial load was expressed as Ea (effective arterial elastance). Tau values were computed using three mathematical methods: τWeiss, τGlantz, and τLogistic. RESULTS: A correlation plot between τ and Ea showed a biphasic relationship a flat phase I and an inclined phase II. The existence of an inflection point was proved mathematically with biphasic linear regression. Pressure-volume area (PVA), a parameter linearly related to myocardial O2 consumption (MVO2), was found to be directly proportional to Ea. The plot of τ versus PVA was also biphasic. CONCLUSION: We concluded that a small increase of the arterial load by phenylephrine increased PVA (index of MVO2) but had little effect on τ. However, after an inflection point, further increase of arterial load and PVA resulted in the linear increase of τ.


Subject(s)
Arteries/drug effects , Arteries/physiology , Phenylephrine/administration & dosage , Phenylephrine/pharmacology , Animals , Blood Pressure/drug effects , Blood Volume/drug effects , Heart Rate/drug effects , Heart Ventricles/drug effects , Heart Ventricles/physiopathology , Hemodynamics/drug effects , Injections , Male , Mice , Mice, Inbred C57BL , Vasodilation/drug effects
17.
Mitochondrion ; 12(2): 294-304, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22119795

ABSTRACT

Subunit 7a of mouse cytochrome c oxidase (Cox) displays a contractile muscle-specific isoform, Cox7a1, that is the major cardiac form. To gain insight into the role of this isoform, we have produced a new knockout mouse line that lacks Cox7a1. We show that homozygous and heterozygous Cox7a1 knockout mice, although viable, have reduced Cox activity and develop a dilated cardiomyopathy at 6 weeks of age. Surprisingly, the cardiomyopathy improves and stabilizes by 6 months of age. Cox7a1 knockout mice incorporate more of the "liver-type" isoform Cox7a2 into the cardiac Cox holoenzyme and, also surprisingly, have higher tissue ATP levels.


Subject(s)
Cardiomyopathy, Dilated/genetics , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Gene Deletion , Myocardium/pathology , Animals , Male , Mice , Mice, Knockout , Protein Subunits/genetics , Survival Analysis
18.
Cardiovasc Toxicol ; 11(4): 325-33, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21744298

ABSTRACT

Obesity-induced remodeling of cardiac extracellular matrix (ECM) leads to myocardial fibrosis and ultimately diastolic dysfunction. Leptin, an adipocyte hormone, is emerging as a novel mechanistic link between obesity and heart diseases. Despite the known essential role of leptin in hepatic and renal fibrosis, the in vivo effects of leptin on cardiac ECM remodeling remain unclear. Our objective was to define the role of leptin as a key mediator of pro-fibrogenic responses in the heart. In vitro administration of leptin to primary cardiofibroblasts resulted in significant stimulation of pro-collagen Iα ( 1 ) and a decrease in pro-matrix metalloproteinase (MMP)-8, -9 and -13 gene expressions at 24 h. To study the in vivo pro-fibrotic effect, leptin was administrated to C57BL/6 and leptin-deficient ob/ob mice for 8 weeks. With exogenous leptin ob/ob mice displayed passive diastolic filling dysfunction, coincided with significant increase in myocardial collagen compared with ob/ob controls. We also observed a marked stimulation of pro-collagen IIIα ( 1 ) and suppression of pro-MMP-8, TIMP-1 and -3 gene expressions in leptin-treated ob/ob mice. Our findings suggest pro-fibrotic effects of leptin in the heart, primarily through the predominance of collagen synthesis over degradation.


Subject(s)
Extracellular Matrix/drug effects , Fibroblasts/drug effects , Leptin/pharmacology , Myocytes, Cardiac/drug effects , Obesity/drug therapy , Animals , Blood Pressure/drug effects , Cells, Cultured , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Echocardiography , Extracellular Matrix/metabolism , Female , Fibroblasts/metabolism , Fibrosis/chemically induced , Fibrosis/metabolism , Fibrosis/pathology , Gene Expression Regulation, Enzymologic/drug effects , Leptin/deficiency , Matrix Metalloproteinases, Secreted/genetics , Matrix Metalloproteinases, Secreted/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism , Obesity/metabolism , RNA, Messenger/metabolism , Tissue Inhibitor of Metalloproteinases/genetics , Tissue Inhibitor of Metalloproteinases/metabolism
19.
Matrix Biol ; 29(6): 511-8, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20600894

ABSTRACT

Aberrant concentrations of cardiac extracellular matrix (ECM) fibrillar collagen cross-linking have been proposed to be an underlying cause of cardiac diastolic dysfunction however the role of the adaptive immune system in this process has yet to be investigated. Fibrillar collagen cross-linking is a product of the enzymatic activities of lysyl oxidase (LOX and LOXL-3) released by the cardiac fibroblast and possibly cardiac myocytes. Our hypothesis is that stimulation of the TH1 lymphocytes activates lysyl oxidase mediated ECM cross-linking and thereby alters left ventricular function. Three-month old C57BL/J female mice were treated with selective TH1 lymphocyte inducers - T-cell receptor Vß peptides (TCR). After 6 weeks, candidate gene expression, tissue enzymatic activity, ECM composition, and left ventricular mechanics were quantified. Lymphocyte gene expression and cytokine assay revealed TH1 immune polarization with TCR administration which was associated with a 2.6-fold and 3.1-fold increase of LOX and LOXL3 gene expression, respectively, and a 55% increase in cardiac LOX enzymatic activity. The ECM cross-linked fibrillar collagen increased by 95% when compared with the control. Concurrently, there was a 33% increased ventricular stiffness, decreased cardiac output, and normal ejection fraction. These data implicate the TH1 lymphocyte in the pathogenesis of diastolic dysfunction which has potential clinical application in the pathogenesis of diastolic heart failure.


Subject(s)
Cardiomyopathies/pathology , Diastole/immunology , Extracellular Matrix/metabolism , Fibrillar Collagens/metabolism , T-Lymphocytes, Helper-Inducer/physiology , T-Lymphocytes/metabolism , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Animals , Cardiac Output/physiology , Cardiomyopathies/metabolism , Cells, Cultured , Coculture Techniques , Female , Fibroblasts/metabolism , Fibrosis , Gene Expression , Heart/physiology , Heart Failure, Diastolic/physiopathology , Heart Ventricles/metabolism , Heart Ventricles/pathology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Protein-Lysine 6-Oxidase/genetics , Protein-Lysine 6-Oxidase/metabolism , Receptors, Antigen, T-Cell, alpha-beta/physiology , Ventricular Function, Left/physiology
20.
Cardiovasc Toxicol ; 10(3): 190-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20556665

ABSTRACT

Left ventricular diastolic dysfunction is an important predictor of prognosis and mortality of heart failure. Increased left ventricular stiffness can be associated with excessive myocardial fibrosis and increased cross-linked collagen by the enzyme lysyl oxidase (LOX). These cardiac extracellular matrix (ECM) remodeling processes are affected by T-lymphocyte function and phenotype. We sought to examine the role of T lymphocytes in myocardial LOX regulation in diet-induced fibrotic hearts. Female SCID mice, devoid of functional T lymphocytes, and wild-type (WT) C57BL/6 were treated with a high-fat high-simple carbohydrate (HFHSC) diet for 12 months. HFHSC-fed WT mice demonstrated a significant increase in the catalytic activity of myocardial LOX compared with respective controls. These changes coincided with a marked increase in ECM collagen cross-linking and impaired diastolic filling pattern. However, induction of LOX was minimal in the SCID mice compared with the WT group. Correspondingly fibrillar cross-linked collagen concentrations and diastolic dysfunction were less prominent in the SCID mice compared with the WT group. Our results suggest a role for T lymphocytes in this dietary induction of diastolic dysfunction through modulation of LOX-dependent collagen maturation.


Subject(s)
Diet/adverse effects , Heart Diseases/enzymology , Heart Diseases/etiology , Protein-Lysine 6-Oxidase/metabolism , T-Lymphocytes/physiology , Animals , Blotting, Western , Collagen/metabolism , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Extracellular Matrix/drug effects , Extracellular Matrix/ultrastructure , Female , Fibrosis , Gene Expression/drug effects , Heart Diseases/pathology , Hemodynamics/physiology , Matrix Metalloproteinases/metabolism , Mice , Mice, Inbred C57BL , Myocardium/pathology , RNA/biosynthesis , RNA/genetics , RNA/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...