Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Med Virol ; 95(10): e29100, 2023 10.
Article in English | MEDLINE | ID: mdl-37786247

ABSTRACT

Little data is available regarding the incidence of gastrointestinal bleeding in adults hospitalized with COVID-19 infection and the influence of patient comorbidities and demographics, COVID-19 therapies, and typical medications used. In this retrospective study, we utilized the National COVID Cohort Collaborative to investigate the primary outcome of the development of gastrointestinal bleeding in 512 467 hospitalized US adults (age >18 years) within 14 days of a COVID-19 infection and the influence of demographics, comorbidities, and selected medications. Gastrointestinal bleeding developed in 0.44% of patients hospitalized with COVID-19. Comorbidities associated with gastrointestinal bleeding include peptic ulcer disease (adjusted odds ratio [aOR] 10.2), obesity (aOR 1.27), chronic kidney disease (aOR 1.20), and tobacco use disorder (aOR 1.28). Lower risk of gastrointestinal bleeding was seen among women (aOR 0.76), Latinx (aOR 0.85), and vaccinated patients (aOR 0.74). Dexamethasone alone or with remdesivir was associated with lower risk of gastrointestinal bleeding (aOR 0.69 and aOR 0.83, respectively). Remdesivir monotherapy was associated with upper gastrointestinal bleeding (aOR 1.25). Proton pump inhibitors were more often prescribed in patients with gastrointestinal bleeding, likely representing treatment for gastrointestinal bleeding rather than a risk factor for its development. In adult patients hospitalized with COVID-19, the use of dexamethasone alone or in combination with remdesivir is negatively associated with gastrointestinal bleeding. Remdesivir monotherapy is associated with increased risk of upper gastrointestinal bleeding.


Subject(s)
COVID-19 , Inpatients , Adult , Humans , Female , Adolescent , Retrospective Studies , COVID-19/complications , COVID-19/epidemiology , Gastrointestinal Hemorrhage/epidemiology , Gastrointestinal Hemorrhage/drug therapy , Gastrointestinal Hemorrhage/prevention & control , Risk Factors , Dexamethasone/therapeutic use
2.
ACG Case Rep J ; 10(2): e00993, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36846359

ABSTRACT

Tumor necrosis factor-α inhibitors are monoclonal antibodies that are commonly used in the treatment of inflammatory bowel disease. A rare side effect of these biological agents is chronic inflammatory demyelinating polyneuropathy, which is a debilitating disease characterized by weakness, sensory dysfunction, and diminished or absent reflexes. We present the first reported case of chronic inflammatory demyelinating polyneuropathy after treatment with the tumor necrosis factor-α inhibitor biosimilar, infliximab-dyyp (Inflectra).

3.
ACG Case Rep J ; 9(12): e00911, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36699632
4.
J Mol Diagn ; 23(6): 753-764, 2021 06.
Article in English | MEDLINE | ID: mdl-33798739

ABSTRACT

Spinal muscular atrophy is a severe autosomal recessive disease caused by disruptions in the SMN1 gene. The nearly identical SMN2 gene copy number is associated with disease severity. SMN1 duplication markers, such as c.∗3+80T>G and c.∗211_∗212del, can assess residual carrier risk. An SMN2 disease modifier (c.859G>C) can help inform prognostic outcomes. The emergence of multiple precision gene therapies for spinal muscular atrophy requires accurate and rapid detection of SMN1 and SMN2 copy numbers to enable early treatment and optimal patient outcomes. We developed and evaluated a single-tube PCR/capillary electrophoresis assay system that quantifies SMN1/2 copy numbers and genotypes three additional clinically relevant variants. Analytical validation was performed with human cell lines and whole blood representing varying SMN1/2 copies on four capillary electrophoresis instrument models. In addition, four independent laboratories used the assay to test 468 residual clinical genomic DNA samples. The results were ≥98.3% concordant with consensus SMN1/2 exon 7 copy numbers, determined using multiplex ligation-dependent probe amplification and droplet digital PCR, and were 100% concordant with Sanger sequencing for the three variants. Furthermore, copy number values were 98.6% (SMN1) and 97.1% (SMN2) concordant to each laboratory's own reference results.


Subject(s)
DNA Copy Number Variations , Gene Duplication , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics , Humans , Reproducibility of Results , Sensitivity and Specificity , Survival of Motor Neuron 2 Protein/genetics
5.
Cureus ; 12(10): e11281, 2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33274156

ABSTRACT

Thiamine (vitamin B1) deficiency is uncommon in developed countries and is most commonly seen in patients with poor dietary intake, malabsorption syndromes, and alcoholism. With the increasing rates of alcohol use, thiamine deficiency is likely an under-recognized and potentially reversible cause of sensorimotor dysfunction called dry beriberi. We present a case of profound lower extremity weakness in a 28-year-old female from Nepal with decompensated alcohol-induced cirrhosis. Based on laboratory testing, it was determined that the cause of her neuropathy was dry beriberi. She was subsequently started on thiamine replacement therapy with slow improvement over the next six months.

6.
Arthritis Care Res (Hoboken) ; 72(6): 850-858, 2020 06.
Article in English | MEDLINE | ID: mdl-30927517

ABSTRACT

OBJECTIVE: To demonstrate the effectiveness of the Extension for Community Healthcare Outcomes (Project ECHO) in educating primary care clinicians (PCCs) to provide best practice rheumatic care to patients in under-resourced communities in New Mexico. METHODS: Attendee data for weekly teleECHO sessions, lectures, grand rounds, and mini-residency trainings were evaluated from June 2006 to June 2014. Participant feedback was evaluated from January 2009 to December 2014, when the program was approved for continuing medical education (CME) credits. Retrospective review of diagnoses associated with case presentations was conducted from June 2006 to June 2014 to evaluate the types of cases presented. A focus group was conducted with a convenience sample of 8 New Mexico PCCs who participated in ECHO Rheumatology (ECHO Rheum) for 1 year or longer. RESULTS: Over the course of 9 years, ECHO Rheum educated 2,230 clinicians, consisting primarily of physicians (53%) and nurse practitioners (22%). A total of 1,958 CME credits were awarded to those who participated. There were 1,173 cases presented; 85% of the cases reflected the 3 most common diagnoses: rheumatoid arthritis (n = 715), fibromyalgia (n = 241), and systemic lupus erythematosus (n = 54). In addition, ECHO Rheum conducted 15 two-day mini-residencies involving 30 PCCs; 21 of these clinicians subsequently completed the American College of Rheumatology online certification. CONCLUSION: Results from this study demonstrate that participation in ECHO Rheum provides clinicians in under-resourced areas access to best-practice knowledge and training in rheumatology.


Subject(s)
Community Health Services , Medically Underserved Area , Rheumatology , Focus Groups , Qualitative Research
7.
J Mol Diagn ; 21(4): 658-676, 2019 07.
Article in English | MEDLINE | ID: mdl-31055023

ABSTRACT

We conducted a multilaboratory assessment to determine the suitability of a new commercially available reference material with 40 cancer variants in a background of wild-type DNA at four different variant allele frequencies (VAFs): 2%, 0.50%, 0.125%, and 0%. The variants include single nucleotides, insertions, deletions, and two structural variations selected for their clinical importance and to challenge the performance of next-generation sequencing (NGS) methods. Fragmented DNA was formulated to simulate the size distribution of circulating wild-type and tumor DNA in a synthetic plasma matrix. DNA was extracted from these samples and characterized with different methods and multiple laboratories. The various extraction methods had differences in yield, perhaps because of differences in chemistry. Digital PCR assays were used to measure VAFs to compare results from different NGS methods. Comparable VAFs were observed across the different NGS methods. This multilaboratory assessment demonstrates that the new reference material is an appropriate tool to determine the analytical parameters of different measurement methods and to ensure their quality assurance.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , DNA, Neoplasm , Liquid Biopsy , Neoplasms/diagnosis , Neoplasms/genetics , Alleles , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Liquid Biopsy/methods , Liquid Biopsy/standards , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Quality Assurance, Health Care , Reference Standards
8.
Cell Rep ; 22(3): 832-847, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29346778

ABSTRACT

Microglia, the CNS-resident immune cells, play important roles in disease, but the spectrum of their possible activation states is not well understood. We derived co-regulated gene modules from transcriptional profiles of CNS myeloid cells of diverse mouse models, including new tauopathy model datasets. Using these modules to interpret single-cell data from an Alzheimer's disease (AD) model, we identified microglial subsets-distinct from previously reported "disease-associated microglia"-expressing interferon-related or proliferation modules. We then analyzed whole-tissue RNA profiles from human neurodegenerative diseases, including a new AD dataset. Correcting for altered cellular composition of AD tissue, we observed elevated expression of the neurodegeneration-related modules, but also modules not implicated using expression profiles from mouse models alone. We provide a searchable, interactive database for exploring gene expression in all these datasets (http://research-pub.gene.com/BrainMyeloidLandscape). Understanding the dimensions of CNS myeloid cell activation in human disease may reveal opportunities for therapeutic intervention.


Subject(s)
Alzheimer Disease/genetics , Brain/metabolism , Microglia/metabolism , Alzheimer Disease/metabolism , Animals , Disease Models, Animal , Humans , Mice
9.
J Alzheimers Dis ; 56(3): 1037-1054, 2017.
Article in English | MEDLINE | ID: mdl-28106546

ABSTRACT

The common p.D358A variant (rs2228145) in IL-6R is associated with risk for multiple diseases and with increased levels of soluble IL-6R in the periphery and central nervous system (CNS). Here, we show that the p.D358A allele leads to increased proteolysis of membrane bound IL-6R and demonstrate that IL-6R peptides with A358 are more susceptible to cleavage by ADAM10 and ADAM17. IL-6 responsive genes were identified in primary astrocytes and microglia and an IL-6 gene signature was increased in the CNS of late onset Alzheimer's disease subjects in an IL6R allele dependent manner. We conducted a screen to identify variants associated with the age of onset of Alzheimer's disease in APOE ɛ4 carriers. Across five datasets, p.D358A had a meta P = 3 ×10-4 and an odds ratio = 1.3, 95% confidence interval 1.12 -1.48. Our study suggests that a common coding region variant of the IL-6 receptor results in neuroinflammatory changes that may influence the age of onset of Alzheimer's disease in APOE ɛ4 carriers.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Brain/metabolism , Polymorphism, Single Nucleotide , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism , ADAM10 Protein/metabolism , ADAM17 Protein/metabolism , Aged , Aged, 80 and over , Alleles , Animals , Apolipoprotein E4/genetics , Astrocytes/metabolism , CD4-Positive T-Lymphocytes/metabolism , Coculture Techniques , Cohort Studies , Female , HEK293 Cells , Humans , Interleukin-6/metabolism , Male , Mice , Microglia/metabolism , Recombinant Proteins/metabolism
10.
Genet Test Mol Biomarkers ; 20(6): 276-84, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27104957

ABSTRACT

AIMS: DNA-based carrier screening is a standard component of donor eligibility protocols practiced by U.S. sperm banks. Applicants who test positive for carrying a recessive disease mutation are typically disqualified. The aim of our study was to examine the utility of a range of screening panels adopted by the industry and the effectiveness of the screening paradigm in reducing a future child's risk of inheriting disease. METHODS: A cohort of 27 donor applicants, who tested negative on an initial cystic fibrosis carrier test, was further screened with three expanded commercial carrier testing panels. These results were then compared to a systematic analysis of the applicants' DNA using next-generation sequencing (NGS) data. RESULTS: The carrier panels detected serious pediatric disease mutations in one, four, or six donor applicants. Because each panel screens distinct regions of the genome, no single donor was uniformly identified as carrier positive by all three panels. In contrast, systematic NGS analysis identified all donors as carriers of one or more mutations associated with severe monogenic pediatric disease. These included 30 variants classified as "pathogenic" based on clinical observation and 66 with a high likelihood of causing gene dysfunction. CONCLUSION: Despite tremendous advances in variant identification, understanding, and analysis, the vast majority of disease-causing mutation combinations remain undetected by commercial carrier screening panels, which cover a narrow, and often distinct, subset of genes and mutations. The biological reality is that all donors and recipients carry serious recessive disease mutations. This challenges the utility of any screening protocol that anchors donor eligibility to carrier status. A more effective approach to reducing recessive disease risk would consider joint comprehensive analysis of both donor and recipient disease mutations. This type of high-resolution recessive disease risk analysis is now available and affordable, but industry practice must be modified to incorporate its use.


Subject(s)
Genetic Carrier Screening/methods , Sperm Banks/methods , Spermatozoa/physiology , Cohort Studies , Cystic Fibrosis/genetics , Cystic Fibrosis/prevention & control , Heterozygote , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Mutation , Sperm Banks/standards
11.
Nat Commun ; 7: 11295, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27097852

ABSTRACT

A common approach to understanding neurodegenerative disease is comparing gene expression in diseased versus healthy tissues. We illustrate that expression profiles derived from whole tissue RNA highly reflect the degenerating tissues' altered cellular composition, not necessarily transcriptional regulation. To accurately understand transcriptional changes that accompany neuropathology, we acutely purify neurons, astrocytes and microglia from single adult mouse brains and analyse their transcriptomes by RNA sequencing. Using peripheral endotoxemia to establish the method, we reveal highly specific transcriptional responses and altered RNA processing in each cell type, with Tnfr1 required for the astrocytic response. Extending the method to an Alzheimer's disease model, we confirm that transcriptomic changes observed in whole tissue are driven primarily by cell type composition, not transcriptional regulation, and identify hundreds of cell type-specific changes undetected in whole tissue RNA. Applying similar methods to additional models and patient tissues will transform our understanding of aberrant gene expression in neurological disease.


Subject(s)
Alzheimer Disease/genetics , Astrocytes/metabolism , Endotoxemia/genetics , Microglia/metabolism , Neurons/metabolism , Transcription, Genetic , Transcriptome , Adult , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Astrocytes/drug effects , Astrocytes/pathology , Cerebellum/drug effects , Cerebellum/metabolism , Cerebellum/pathology , Disease Models, Animal , Endotoxemia/chemically induced , Endotoxemia/metabolism , Endotoxemia/pathology , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Frontal Lobe/pathology , Gene Expression Profiling , Gene Expression Regulation , Humans , Lipopolysaccharides/pharmacology , Mice , Microglia/drug effects , Microglia/pathology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/pathology , Organ Specificity , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Sequence Analysis, RNA
13.
Genet Med ; 18(2): 174-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25880441

ABSTRACT

PURPOSE: Carrier screening for mutations contributing to cystic fibrosis (CF) is typically accomplished with panels composed of variants that are clinically validated primarily in patients of European descent. This approach has created a static genetic and phenotypic profile for CF. An opportunity now exists to reevaluate the disease profile of CFTR at a global population level. METHODS: CFTR allele and genotype frequencies were obtained from a nonpatient cohort with more than 60,000 unrelated personal genomes collected by the Exome Aggregation Consortium. Likely disease-contributing mutations were identified with the use of public database annotations and computational tools. RESULTS: We identified 131 previously described and likely pathogenic variants and another 210 untested variants with a high probability of causing protein damage. None of the current genetic screening panels or existing CFTR mutation databases covered a majority of deleterious variants in any geographical population outside of Europe. CONCLUSIONS: Both clinical annotation and mutation coverage by commercially available targeted screening panels for CF are strongly biased toward detection of reproductive risk in persons of European descent. South and East Asian populations are severely underrepresented, in part because of a definition of disease that preferences the phenotype associated with European-typical CFTR alleles.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Genetic Testing , Mass Screening , Genetic Carrier Screening , Humans , Mutation , Risk Factors
14.
BMC Med Genet ; 16: 100, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26510457

ABSTRACT

BACKGROUND: Spinal muscular atrophy (SMA) is the most common pan-ethnic cause of early childhood death due to mutations in a single gene, SMN1. Most chromosome 5 homologs have a functional gene and dysfunctional copy, SMN2, with a single synonymous base substitution that results in faulty RNA splicing. However, the copy number of SMN1 and SMN2 is highly variable, and one in 60 adults worldwide are SMA carriers. Although population-wide screening is recommended, current SMA carrier tests have not been incorporated into targeted gene panels. METHODS: Here we describe a novel computational protocol for determining SMA carrier status based solely on individual exome data. Our method utilizes a Bayesian hierarchical model to quantify an individual's carrier probability given only his or her SMN1 and SMN2 reads at six loci of interest. RESULTS: We find complete concordance with results obtained with the current qPCR-based testing standard in known SMA carriers and affecteds. We applied our protocol to the phase 3 cohort of the 1,000 Genomes Project and found carrier frequencies in multiple populations consistent with the present literature. CONCLUSION: Our process is a convenient, robust alternative to qPCR, which can easily be integrated into the analysis of large multi-gene NGS carrier screens.


Subject(s)
Genetic Carrier Screening/methods , High-Throughput Nucleotide Sequencing/methods , Muscular Atrophy, Spinal/genetics , Case-Control Studies , Cohort Studies , Human Genome Project , Humans , Models, Genetic , Multiplex Polymerase Chain Reaction , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics
15.
BMC Bioinformatics ; 16: 132, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25928861

ABSTRACT

BACKGROUND: Permutation-based gene set tests are standard approaches for testing relationships between collections of related genes and an outcome of interest in high throughput expression analyses. Using M random permutations, one can attain p-values as small as 1/(M+1). When many gene sets are tested, we need smaller p-values, hence larger M, to achieve significance while accounting for the number of simultaneous tests being made. As a result, the number of permutations to be done rises along with the cost per permutation. To reduce this cost, we seek parametric approximations to the permutation distributions for gene set tests. RESULTS: We study two gene set methods based on sums and sums of squared correlations. The statistics we study are among the best performers in the extensive simulation of 261 gene set methods by Ackermann and Strimmer in 2009. Our approach calculates exact relevant moments of these statistics and uses them to fit parametric distributions. The computational cost of our algorithm for the linear case is on the order of doing |G| permutations, where |G| is the number of genes in set G. For the quadratic statistics, the cost is on the order of |G|(2) permutations which can still be orders of magnitude faster than plain permutation sampling. We applied the permutation approximation method to three public Parkinson's Disease expression datasets and discovered enriched gene sets not previously discussed. We found that the moment-based gene set enrichment p-values closely approximate the permutation method p-values at a tiny fraction of their cost. They also gave nearly identical rankings to the gene sets being compared. CONCLUSIONS: We have developed a moment based approximation to linear and quadratic gene set test statistics' permutation distribution. This allows approximate testing to be done orders of magnitude faster than one could do by sampling permutations. We have implemented our method as a publicly available Bioconductor package, npGSEA (www.bioconductor.org) .


Subject(s)
Algorithms , Biomarkers/metabolism , Gene Expression Profiling , Genomics/methods , Models, Statistical , Parkinson Disease/genetics , Data Interpretation, Statistical , Humans
17.
J Neurosci ; 35(5): 2118-32, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25653368

ABSTRACT

The ability to attend to relevant stimuli and to adapt dynamically as demands change is a core aspect of cognition, and one that is impaired in several neuropsychiatric diseases, including attention deficit/hyperactivity disorder. However, the cellular and molecular mechanisms underlying such cognitive adaptability are poorly understood. We found that deletion of the caspase-3 gene, encoding an apoptosis protease with newly discovered roles in neural plasticity, disrupts attention in mice while preserving multiple learning and memory capabilities. Attention-related deficits include distractibility, impulsivity, behavioral rigidity, and reduced habituation to novel stimuli. Excess exploratory activity in Casp3(-/-) mice was correlated with enhanced novelty-induced activity in the dentate gyrus, which may be related to our findings that caspase-3 is required for homeostatic synaptic plasticity in vitro and homeostatic expression of AMPA receptors in vivo in response to chronic or repeated stimuli. These results suggest an important role for caspase-3 in synaptic suppression of irrelevant stimuli.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Attention , Caspase 3/deficiency , Homeostasis , Synapses/physiology , Animals , Attention Deficit Disorder with Hyperactivity/physiopathology , Caspase 3/genetics , Dentate Gyrus/metabolism , Dentate Gyrus/physiology , Gene Deletion , Maze Learning , Mice , Mice, Inbred C57BL , Neuronal Plasticity
18.
Minn Med ; 97(1): 48-50, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24645377

ABSTRACT

Nearly a third of children and adolescents are overweight or obese, which puts them at higher risk for diseases such as hypertension, type 2 diabetes, stroke, coronary heart disease and some cancers. This article discusses strategies physicians can use to address the issue of weight with children and their families. It also describes the efforts of a Minnesota collaborative that is working to improve obesity care and ensure insurance coverage for it.


Subject(s)
Pediatric Obesity/therapy , Adolescent , Body Mass Index , Child , Cooperative Behavior , Cross-Sectional Studies , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/therapy , Exercise , Feeding Behavior , Female , Guideline Adherence , Humans , Interdisciplinary Communication , Life Style , Male , Minnesota , Pediatric Obesity/epidemiology , Weight Loss
19.
Bioinformatics ; 29(24): 3220-1, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24078713

ABSTRACT

UNLABELLED: It is common for computational analyses to generate large amounts of complex data that are difficult to process and share with collaborators. Standard methods are needed to transform such data into a more useful and intuitive format. We present ReportingTools, a Bioconductor package, that automatically recognizes and transforms the output of many common Bioconductor packages into rich, interactive, HTML-based reports. Reports are not generic, but have been individually designed to reflect content specific to the result type detected. Tabular output included in reports is sortable, filterable and searchable and contains context-relevant hyperlinks to external databases. Additionally, in-line graphics have been developed for specific analysis types and are embedded by default within table rows, providing a useful visual summary of underlying raw data. ReportingTools is highly flexible and reports can be easily customized for specific applications using the well-defined API. AVAILABILITY: The ReportingTools package is implemented in R and available from Bioconductor (version ≥ 2.11) at the URL: http://bioconductor.org/packages/release/bioc/html/ReportingTools.html. Installation instructions and usage documentation can also be found at the above URL.


Subject(s)
Computational Biology , Gene Expression Profiling/methods , Genomics/methods , High-Throughput Nucleotide Sequencing , Software , Algorithms , Databases, Factual
20.
J Exp Med ; 210(12): 2553-67, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24166713

ABSTRACT

Excessive glutamate signaling is thought to underlie neurodegeneration in multiple contexts, yet the pro-degenerative signaling pathways downstream of glutamate receptor activation are not well defined. We show that dual leucine zipper kinase (DLK) is essential for excitotoxicity-induced degeneration of neurons in vivo. In mature neurons, DLK is present in the synapse and interacts with multiple known postsynaptic density proteins including the scaffolding protein PSD-95. To examine DLK function in the adult, DLK-inducible knockout mice were generated through Tamoxifen-induced activation of Cre-ERT in mice containing a floxed DLK allele, which circumvents the neonatal lethality associated with germline deletion. DLK-inducible knockouts displayed a modest increase in basal synaptic transmission but had an attenuation of the JNK/c-Jun stress response pathway activation and significantly reduced neuronal degeneration after kainic acid-induced seizures. Together, these data demonstrate that DLK is a critical upstream regulator of JNK-mediated neurodegeneration downstream of glutamate receptor hyper-activation and represents an attractive target for the treatment of indications where excitotoxicity is a primary driver of neuronal loss.


Subject(s)
MAP Kinase Kinase Kinases/physiology , Nerve Degeneration/physiopathology , Animals , Brain/pathology , Brain/physiopathology , Disks Large Homolog 4 Protein , Glutamic Acid/physiology , Guanylate Kinases/physiology , Kainic Acid/toxicity , MAP Kinase Kinase Kinases/deficiency , MAP Kinase Kinase Kinases/genetics , MAP Kinase Signaling System , Membrane Proteins/physiology , Mice , Mice, Knockout , N-Methylaspartate/physiology , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Nerve Tissue Proteins/physiology , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...