Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 23(12): 1337-1347, 2023 12.
Article in English | MEDLINE | ID: mdl-38079231

ABSTRACT

The highly compact Linear Ion Trap Mass Spectrometer (LITMS), developed at NASA Goddard Space Flight Center, combines Mars-ambient laser desorption-mass spectrometry (LD-MS) and pyrolysis-gas chromatography-mass spectrometry (GC-MS) through a single, miniaturized linear ion trap mass analyzer. The LITMS instrument is based on the Mars Organic Molecule Analyser (MOMA) investigation developed for the European Space Agency's ExoMars Rover Mission with further enhanced analytical features such as dual polarity ion detection and a dual frequency RF (radio frequency) power supply allowing for an increased mass range. The LITMS brassboard prototype underwent an extensive repackaging effort to produce a highly compact system for terrestrial field testing, allowing for molecular sample analysis in rugged planetary analog environments outside the laboratory. The LITMS instrument was successfully field tested in the Mars analog environment of the Atacama Desert in 2019 as part of the Atacama Rover Astrobiology Drilling Studies (ARADS) project, providing the first in situ planetary analog analysis for a high-fidelity, flight-like ion trap mass spectrometer. LITMS continued to serve as a laboratory tool for continued analysis of natural Atacama samples provided by the subsequent 2019 ARADS final field campaign.


Subject(s)
Mars , Space Flight , Exobiology/methods , Mass Spectrometry , Gas Chromatography-Mass Spectrometry/methods
2.
Biol Open ; 11(9)2022 09 15.
Article in English | MEDLINE | ID: mdl-35451474

ABSTRACT

Hepatoblastoma (HB) is the most common pediatric primary liver malignancy, and survival for high-risk disease approaches 50%. Mouse models of HB fail to recapitulate hallmarks of high-risk disease. The aim of this work was to generate murine models that show high-risk features including multifocal tumors, vascular invasion, metastasis, and circulating tumor cells (CTCs). HepT1 cells were injected into the livers or tail veins of mice, and tumor growth was monitored with magnetic resonance and bioluminescent imaging. Blood was analyzed with fluorescence-activated cell sorting to identify CTCs. Intra- and extra-hepatic tumor samples were harvested for immunohistochemistry and RNA and DNA sequencing. Cell lines were grown from tumor samples and profiled with RNA sequencing. With intrahepatic injection of HepT1 cells, 100% of animals grew liver tumors and showed vascular invasion, metastasis, and CTCs. Mutation profiling revealed genetic alterations in seven cancer-related genes, while transcriptomic analyses showed changes in gene expression with cells that invade vessels. Tail vein injection of HepT1 cells resulted in multifocal, metastatic disease. These unique models will facilitate further meaningful studies of high-risk HB. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Neoplastic Cells, Circulating , Animals , Cell Line, Tumor , Disease Models, Animal , Hepatoblastoma/genetics , Hepatoblastoma/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice
4.
Discourse Process ; 58(3): 213-232, 2021.
Article in English | MEDLINE | ID: mdl-34024962

ABSTRACT

In this study, adults, who were naïve to organic chemistry, drew stereoisomers of molecules and explained their drawings. From these explanations, we identified nine strategies that participants expressed during those explanations. Five of the nine strategies referred to properties of the molecule that were explanatorily irrelevant to solving the problem; the remaining four referred to properties that were explanatorily relevant to the solution. For each problem, we tallied which of the nine strategies were expressed within the explanation for that problem, and determined whether the strategy was expressed in speech only, gesture only, or in both speech and gesture within the explanation. After these explanations, all participants watched the experimenter deliver a two-minute training module on stereoisomers. Following the training, participants repeated the drawing+explanation task on six new problems. The number of relevant strategies that participants expressed in speech (alone or with gesture) before training did not predict their post-training scores. However, the number of relevant strategies participants expressed in gesture-only before training did predict their post-training scores. Conveying relevant information about stereoisomers uniquely in gesture prior to a brief training is thus a good index of who is most likely to learn from the training. We suggest that gesture reveals explanatorily relevant implicit knowledge that reflects (and perhaps even promotes) acquisition of new understanding.

5.
Sci Rep ; 11(1): 2967, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536467

ABSTRACT

Hepatoblastoma (HB) is the most common pediatric liver malignancy. High-risk patients have poor survival, and current chemotherapies are associated with significant toxicities. Targeted therapies are needed to improve outcomes and patient quality of life. Most HB cases are TP53 wild-type; therefore, we hypothesized that targeting the p53 regulator Murine double minute 4 (MDM4) to reactivate p53 signaling may show efficacy. MDM4 expression was elevated in HB patient samples, and increased expression was strongly correlated with decreased expression of p53 target genes. Treatment with NSC207895 (XI-006), which inhibits MDM4 expression, or ATSP-7041, a stapled peptide dual inhibitor of MDM2 and MDM4, showed significant cytotoxic and antiproliferative effects in HB cells. Similar phenotypes were seen with short hairpin RNA (shRNA)-mediated inhibition of MDM4. Both NSC207895 and ATSP-7041 caused significant upregulation of p53 targets in HB cells. Knocking-down TP53 with shRNA or overexpressing MDM4 led to resistance to NSC207895-mediated cytotoxicity, suggesting that this phenotype is dependent on the MDM4-p53 axis. MDM4 inhibition also showed efficacy in a murine model of HB with significantly decreased tumor weight and increased apoptosis observed in the treatment group. This study demonstrates that inhibition of MDM4 is efficacious in HB by upregulating p53 tumor suppressor signaling.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Hepatoblastoma/drug therapy , Liver Neoplasms/drug therapy , Oxadiazoles/pharmacology , Piperazines/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis/drug effects , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Child, Preschool , Cohort Studies , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Hepatoblastoma/genetics , Hepatoblastoma/pathology , Humans , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Oxadiazoles/therapeutic use , Piperazines/therapeutic use , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Suppressor Protein p53/genetics , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
6.
Sci Rep ; 10(1): 4043, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32132552

ABSTRACT

Status epilepticus (SE) is a prevalent disorder associated with significant morbidity, including the development of epilepsy and mortality. Cardiac arrhythmias (i.e. inappropriate sinus tachycardia and bradycardia, asystole, and atrioventricular blocks) are observed in patients following SE. We characterized ictal (during a seizure) and interictal (between seizure) cardiac arrhythmogenesis following SE using continuous electrocardiography and video electroencephalography (vEEG) recordings throughout a 14-day monitoring period in an intrahippocampal chemoconvulsant mouse model that develops epilepsy. We quantified heart rhythm abnormalities and examined whether the frequency of cardiac events correlated with epileptiform activity, circadian (light/dark) cycle, the presence of seizures, and survival during this period of early epileptogenesis (the development of epilepsy) following SE. Shortly following SE, mice developed an increased interictal heart rate and heart rhythm abnormalities (i.e. sinus pause and sinus arrhythmias) when compared to control mice. Heart rhythm abnormalities were more frequent during the light cycle and were not correlated with increased epileptiform activity or seizure frequency. Finally, SE animals had early mortality, and a death event captured during vEEG recording demonstrated severe bradycardia prior to death. These cardiac changes occurred within 14 days after SE and may represent an early risk factor for sudden death following SE.


Subject(s)
Arrhythmias, Cardiac , Circadian Rhythm/drug effects , Electroencephalography , Kainic Acid/adverse effects , Status Epilepticus , Animals , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Disease Models, Animal , Kainic Acid/pharmacology , Male , Mice , Status Epilepticus/chemically induced , Status Epilepticus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...