Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Appl Microbiol Biotechnol ; 103(14): 5627-5639, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31104101

ABSTRACT

Accumulation of acetate is a limiting factor in recombinant production of (R)-3-hydroxybutyrate (3HB) by Escherichia coli in high-cell-density processes. To alleviate this limitation, this study investigated two approaches: (i) deletion of phosphotransacetylase (pta), pyruvate oxidase (poxB), and/or the isocitrate lyase regulator (iclR), known to decrease acetate formation, on bioreactor cultivations designed to achieve high 3HB concentrations. (ii) Screening of different E. coli strain backgrounds (B, BL21, W, BW25113, MG1655, W3110, and AF1000) for their potential as low acetate-forming, 3HB-producing platforms. Deletion of pta and pta-poxB in the AF1000 strain background was to some extent successful in decreasing acetate formation, but also dramatically increased excretion of pyruvate and did not result in increased 3HB production in high-cell-density fed-batch cultivations. Screening of the different E. coli strains confirmed BL21 as a low acetate-forming background. Despite low 3HB titers in low-cell-density screening, 3HB-producing BL21 produced five times less acetic acid per mole of 3HB, which translated into a 2.3-fold increase in the final 3HB titer and a 3-fold higher volumetric 3HB productivity over 3HB-producing AF1000 strains in nitrogen-limited fed-batch cultivations. Consequently, the BL21 strain achieved the hitherto highest described volumetric productivity of 3HB (1.52 g L-1 h-1) and the highest 3HB concentration (16.3 g L-1) achieved by recombinant E. coli. Screening solely for 3HB titers in low-cell-density batch cultivations would not have identified the potential of this strain, reaffirming the importance of screening with the final production conditions in mind.


Subject(s)
3-Hydroxybutyric Acid/biosynthesis , Batch Cell Culture Techniques , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering , Bioreactors , Escherichia coli Proteins/genetics , Gene Deletion , Pyruvic Acid
2.
Appl Microbiol Biotechnol ; 103(9): 3693-3704, 2019 May.
Article in English | MEDLINE | ID: mdl-30834961

ABSTRACT

Biotechnologically produced (R)-3-hydroxybutyrate is an interesting pre-cursor for antibiotics, vitamins, and other molecules benefitting from enantioselective production. An often-employed pathway for (R)-3-hydroxybutyrate production in recombinant E. coli consists of three-steps: (1) condensation of two acetyl-CoA molecules to acetoacetyl-CoA, (2) reduction of acetoacetyl-CoA to (R)-3-hydroxybutyrate-CoA, and (3) hydrolysis of (R)-3-hydroxybutyrate-CoA to (R)-3-hydroxybutyrate by thioesterase. Whereas for the first two steps, many proven heterologous candidate genes exist, the role of either endogenous or heterologous thioesterases is less defined. This study investigates the contribution of four native thioesterases (TesA, TesB, YciA, and FadM) to (R)-3-hydroxybutyrate production by engineered E. coli AF1000 containing a thiolase and reductase from Halomonas boliviensis. Deletion of yciA decreased the (R)-3-hydroxybutyrate yield by 43%, whereas deletion of tesB and fadM resulted in only minor decreases. Overexpression of yciA resulted in doubling of (R)-3-hydroxybutyrate titer, productivity, and yield in batch cultures. Together with overexpression of glucose-6-phosphate dehydrogenase, this resulted in a 2.7-fold increase in the final (R)-3-hydroxybutyrate concentration in batch cultivations and in a final (R)-3-hydroxybutyrate titer of 14.3 g L-1 in fed-batch cultures. The positive impact of yciA overexpression in this study, which is opposite to previous results where thioesterase was preceded by enzymes originating from different hosts or where (S)-3-hydroxybutyryl-CoA was the substrate, shows the importance of evaluating thioesterases within a specific pathway and in strains and cultivation conditions able to achieve significant product titers. While directly relevant for (R)-3-hydroxybutyrate production, these findings also contribute to pathway improvement or decreased by-product formation for other acyl-CoA-derived products.


Subject(s)
3-Hydroxybutyric Acid/biosynthesis , Acyl Coenzyme A/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Palmitoyl-CoA Hydrolase/metabolism , Thiolester Hydrolases/genetics , 3-Hydroxybutyric Acid/analysis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Batch Cell Culture Techniques , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Halomonas/enzymology , Metabolic Engineering , Palmitoyl-CoA Hydrolase/genetics , Thiolester Hydrolases/metabolism
3.
J Hazard Mater ; 365: 74-80, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30412809

ABSTRACT

Environmental release and accumulation of pharmaceuticals and personal care products is a global concern in view of increased awareness of ecotoxicological effects. Adsorbent properties make the biopolymer melanin an interesting alternative to remove micropollutants from water. Recently, tyrosinase-surface-displaying Escherichia coli was shown to be an interesting self-replicating production system for melanin-covered cells for batch-wise absorption of the model pharmaceutical chloroquine. This work explores the suitability of these melanin-covered E. coli for the continuous removal of pharmaceuticals from wastewater. A continuous-flow membrane bioreactor containing melanized E. coli cells was used for adsorption of chloroquine from the influent until saturation and subsequent regeneration. At a low loading of cells (10 g/L) and high influent concentration of chloroquine (0.1 mM), chloroquine adsorbed until saturation after 26 ± 2 treated reactor volumes (39 ± 3 L). The average effluent concentration during the first 20 h was 0.0018 mM, corresponding to 98.2% removal. Up to 140 ± 6 mg chloroquine bound per gram of cells following mixed homo- and heterogeneous adsorption kinetics. In situ low-pH regeneration released all chloroquine without apparent capacity loss over three consecutive cycles. This shows the potential of melanized cells for treatment of conventional wastewater or highly concentrated upstream sources such as hospitals or manufacturing sites.


Subject(s)
Bioreactors , Chloroquine/chemistry , Escherichia coli , Melanins/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Adsorption , Membranes, Artificial
4.
Biochim Biophys Acta Biomembr ; 1861(2): 486-494, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30521785

ABSTRACT

Display of recombinant enzymes on the cell surface of Gram-negative bacteria is a desirable feature with applications in whole-cell biocatalysis, affinity screening and degradation of environmental pollutants. One common technique for recombinant protein display on the Escherichia coli surface is autotransport. Successful autotransport of an enzyme largely depends on the following: (1) the size, sequence and structure of the displayed protein, (2) the cultivation conditions, and (3) the choice of the autotransporter expression system. Common problems with autotransporter-mediated surface display include low expression levels and truncated fusion proteins, which both limit the cell-specific activity. The present study investigated an autotransporter expression system for improved display of tyrosinase on the surface of E. coli by evaluating different variants of the autotransporter vector including: promoter region, signal peptide, the recombinant passenger, linker regions, and the autotransporter translocation unit itself. The impact of these changes on translocation to the cell surface was monitored by the cell-specific activity as well as antibody-based flow cytometric analysis of full-length and degraded passenger. Applying these strategies, the amount of displayed full-length tyrosinase on the cell surface was increased, resulting in an overall 5-fold increase of activity as compared to the initial autotransport expression system. Surprisingly, heterologous expression using 7 different translocation units all resulted in functional expression and only differed 1.6-fold in activity. This study provides a basis for broadening of the range of proteins that can be surface displayed and the development of new autotransporter-based processes in industrial-scale whole-cell biocatalysis.


Subject(s)
Cell Membrane/metabolism , Monophenol Monooxygenase/chemistry , Type V Secretion Systems/metabolism , Cell Membrane/enzymology , Escherichia coli/metabolism , Protein Domains , Protein Engineering
5.
J Environ Manage ; 193: 491-502, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28256364

ABSTRACT

Adsorption with activated carbon is widely suggested as an option for the removal of organic micropollutants including pharmaceutically active compounds (PhACs) in wastewater. In this study adsorption with granular activated carbon (GAC) and powdered activated carbon (PAC) was analyzed and compared in parallel operation at three Swedish wastewater treatment plants with the goal to achieve a 95% PhAC removal. Initially, mapping of the prevalence of over 100 substances was performed at each plant and due to low concentrations a final 22 were selected for further evaluation. These include carbamazepine, clarithromycin and diclofenac, which currently are discussed for regulation internationally. A number of commercially available activated carbon products were initially screened using effluent wastewater. Of these, a reduced set was selected based on adsorption characteristics and cost. Experiments designed with the selected carbons in pilot-scale showed that most products could indeed remove PhACs to the target level, both on total and individual basis. In a setup using internal recirculation the PAC system achieved a 95% removal applying a fresh dose of 15-20 mg/L, while carbon usage rates for the GAC application were much broader and ranged from <28 to 230 mg/L depending on the carbon product. The performance of the PAC products generally gave better results for individual PhACs in regards to carbon availability. All carbon products showed a specific adsorption for a specific PhAC meaning that knowledge of the target pollutants must be acquired before successful design of a treatment system. In spite of different configurations and operating conditions of the different wastewater treatment plants no considerable differences regarding pharmaceutical removal were observed.


Subject(s)
Waste Disposal, Fluid , Wastewater , Adsorption , Carbon , Water Pollutants, Chemical , Water Purification
6.
J Environ Manage ; 193: 163-171, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28214398

ABSTRACT

The removal of pharmaceutically active compounds by powdered activated carbon (PAC) in municipal wastewater is a promising solution to the problem of polluted recipient waters. Today, an efficient design strategy is however lacking with regard to high-level overall, and specific, substance removal in the large scale. The performance of PAC-based removal of pharmaceuticals was studied in pilot-scale with respect to the critical parameters; contact time and PAC dose using one PAC product selected by screening in bench-scale. The goal was a minimum of 95% removal of the pharmaceuticals present in the evaluated municipal wastewater. A set of 21 pharmaceuticals was selected from an initial 100 due to their high occurrence in the effluent water of two selected wastewater treatment plants (WWTPs) in Sweden, whereof candidates discussed for future EU regulation directives were included. By using recirculation of PAC over a treatment system using three sequential contact tanks, a combination of the benefits of powdered and granular carbon performance was achieved. The treatment system was designed so that recirculation could be introduced to any of the three tanks to investigate the effect of recirculation on the adsorption performance. This was compared to use of the setup, but without recirculation. A higher degree of pharmaceutical removal was achieved in all recirculation setups, both overall and with respect to specific substances, as compared to without recirculation. Recirculation was tested with nominal contact times of 30, 60 and 120 min and the goal of 95% removal could be achieved already at the shortest contact times at a PAC dose of 10-15 mg/L. In particular, the overall removal could be increased even to 97% and 99%, at 60 and 120 min, respectively, when the recirculation point was the first tank. Recirculation of PAC to either the first or the second contact tank proved to be comparable, while a slightly lower performance was observed with recirculation to the third tank. With regards to individual substances, clarithromycin and diclofenac were ubiquitously removed according to the set goal and in contrast, a few substances (fluconazole, irbesartan, memantine and venlafaxine) required specific settings to reach an acceptable removal.


Subject(s)
Waste Disposal, Fluid , Water Purification , Adsorption , Carbon , Charcoal , Water Pollutants, Chemical
7.
Sci Rep ; 6: 36117, 2016 10 26.
Article in English | MEDLINE | ID: mdl-27782179

ABSTRACT

Today, it is considered state-of-the-art to engineer living organisms for various biotechnology applications. Even though this has led to numerous scientific breakthroughs, the enclosed interior of bacterial cells still restricts interactions with enzymes, pathways and products due to the mass-transfer barrier formed by the cell envelope. To promote accessibility, we propose engineering of biocatalytic reactions and subsequent product deposition directly on the bacterial surface. As a proof-of-concept, we used the AIDA autotransporter vehicle for Escherichia coli surface expression of tyrosinase and fully oxidized externally added tyrosine to the biopolymer melanin. This resulted in a color change and creation of a black cell exterior. The capture of ninety percent of a pharmaceutical wastewater pollutant followed by regeneration of the cell bound melanin matrix through a simple pH change, shows the superior function and facilitated processing provided by the surface methodology. The broad adsorption spectrum of melanin could also allow removal of other micropollutants.


Subject(s)
Escherichia coli/metabolism , Melanins/metabolism , Monophenol Monooxygenase/metabolism , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Biocatalysis , Cell Wall/metabolism , Melanins/chemistry , Melanins/genetics , Monophenol Monooxygenase/genetics , Plasmids/genetics , Plasmids/metabolism , Spectroscopy, Fourier Transform Infrared , Tyrosine/metabolism
8.
Microb Cell Fact ; 15: 91, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27245326

ABSTRACT

BACKGROUND: In a recently discovered microorganism, Halomonas boliviensis, polyhydroxybutyrate production was extensive and in contrast to other PHB producers, contained a set of alleles for the enzymes of this pathway. Also the monomer, (R)-3-hydroxybutyrate (3HB), possesses features that are interesting for commercial production, in particular the synthesis of fine chemicals with chiral specificity. Production with a halophilic organism is however not without serious drawbacks, wherefore it was desirable to introduce the 3HB pathway into Escherichia coli. RESULTS: The production of 3HB is a two-step process where the acetoacetyl-CoA reductase was shown to accept both NADH and NADPH, but where the V max for the latter was eight times higher. It was hypothesized that NADPH could be limiting production due to less abundance than NADH, and two strategies were employed to increase the availability; (1) glutamate was chosen as nitrogen source to minimize the NADPH consumption associated with ammonium salts and (2) glucose-6-phosphate dehydrogenase was overexpressed to improve NADPH production from the pentose phosphate pathway. Supplementation of glutamate during batch cultivation gave the highest specific productivity (q3HB = 0.12 g g(-1) h(-1)), while nitrogen depletion/zwf overexpression gave the highest yield (Y3HB/CDW = 0.53 g g(-1)) and a 3HB concentration of 1 g L(-1), which was 50% higher than the reference. A nitrogen-limited fedbatch process gave a concentration of 12.7 g L(-1) and a productivity of 0.42 g L(-1) h(-1), which is comparable to maximum values found in recombinant E. coli. CONCLUSIONS: Increased NADPH supply is a valuable tool to increase recombinant 3HB production in E. coli, and the inherent hydrolysis of CoA leads to a natural export of the product to the medium. Acetic acid production is still the dominating by-product and this needs attention in the future to increase the volumetric productivity further.


Subject(s)
3-Hydroxybutyric Acid/biosynthesis , Escherichia coli/metabolism , NAD/metabolism , 3-Hydroxybutyric Acid/chemistry , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/growth & development , Glutamic Acid/metabolism , Halomonas/classification , Halomonas/enzymology , Halomonas/genetics , Nitrogen/metabolism , Phylogeny , Plasmids/genetics , Plasmids/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Stereoisomerism
9.
Front Microbiol ; 6: 844, 2015.
Article in English | MEDLINE | ID: mdl-26347729

ABSTRACT

The chiral compound (R)-3-hydroxybutyrate (3HB) is naturally produced by many wild type organisms as the monomer for polyhydroxybutyrate (PHB). Both compounds are commercially valuable and co-polymeric polyhydroxyalkanoates have been used e.g., in medical applications for skin grafting and as components in pharmaceuticals. In this paper we investigate cultivation strategies for production of 3HB in the previously described E. coli strain AF1000 pJBGT3RX. This strain produces extracellular 3HB by expression of two genes from the PHB pathway of Halomonas boliviensis. H. boliviensis is a newly isolated halophile that forms PHB as a storage compound during carbon excess and simultaneous limitation of another nutrient like nitrogen and phosphorous. We hypothesize that a similar approach can be used to control the flux from acetyl-CoA to 3HB also in E. coli; decreasing the flux to biomass and favoring the pathway to the product. We employed ammonium- or phosphate-limited fed-batch processes for comparison of the productivity at different nutrient limitation or starvation conditions. The feed rate was shown to affect the rate of glucose consumption, respiration, 3HB, and acetic acid production, although the proportions between them were more difficult to affect. The highest 3HB volumetric productivity, 1.5 g L(-1) h(-1), was seen for phosphate-limitation.

10.
Microb Cell Fact ; 14: 51, 2015 Apr 11.
Article in English | MEDLINE | ID: mdl-25889969

ABSTRACT

BACKGROUND: Lignocellulosic waste is a desirable biomass for use in second generation biorefineries. Up to 40% of its sugar content consist of pentoses, which organisms either take up sequentially after glucose depletion, or not at all. A previously described Escherichia coli strain, PPA652ara, capable of simultaneous consumption of glucose, xylose and arabinose was in the present work utilized for production of (R)-3-hydroxybutyric acid (3HB) from a mixture of glucose, xylose and arabinose. RESULTS: The Halomonas boliviensis genes for 3HB production were for the first time cloned into E. coli PPA652ara, leading to product secretion directly into the medium. Process design was based on comparisons of batch, fed-batch and continuous cultivation, where both excess and limitation of the carbon mixture was studied. Carbon limitation resulted in low specific productivity of 3HB (<2 mg g(-1) h(-1)) compared to carbon excess (25 mg g(-1) h(-1)), but the yield of 3HB/cell dry weight (Y3HB/CDW) was very low (0.06 g g(-1)) during excess. Nitrogen-exhausted conditions could be used to sustain a high specific productivity (31 mg g(-1) h(-1)) and to increase the yield of 3HB/cell dry weight to 1.38 g g(-1). Nitrogen-limited fed-batch process design led to further increased specific productivity (38 mg g(-1) h(-1)) but also to additional cell growth (Y3HB/CDW=0.16 g g(-1)). Strain PPA652ara did under all processing conditions simultaneously consume glucose, xylose and arabinose, which was not the case for a reference wild type E. coli, which also gave a higher carbon flux to acetic acid. CONCLUSIONS: It was demonstrated that by using E. coli PPA652ara, it was possible to design a production process for 3HB from a mixture of glucose, xylose and arabinose where all sugars were consumed. An industrial 3HB production process is proposed to be divided into a growth and a production phase, and nitrogen depletion/limitation is a potential strategy to maximize the yield of 3HB/CDW in the latter. The specific productivity of 3HB reported here from glucose, xylose and arabinose by E. coli is further comparable to the current state of the art for production from glucose sources.


Subject(s)
3-Hydroxybutyric Acid/biosynthesis , Arabinose/metabolism , Escherichia coli/metabolism , Glucose/metabolism , Xylose/metabolism , Acetyl-CoA C-Acetyltransferase/genetics , Acetyl-CoA C-Acetyltransferase/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biomass , Bioreactors/microbiology , Chromatography, Gas , Escherichia coli/genetics , Halomonas/enzymology , Halomonas/genetics , Metabolic Engineering/methods , Reproducibility of Results
11.
Microb Cell Fact ; 14: 47, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25889453

ABSTRACT

BACKGROUND: Salmonella enterica serovar Enteritidis (SE) is one of the most potent pathogenic Salmonella serotypes causing food-borne diseases in humans. We have previously reported the use of the ß-autotransporter AIDA-I to express the Salmonella flagellar protein H:gm and the SE serotype-specific fimbrial protein SefA at the surface of E. coli as live bacterial vaccine vehicles. While SefA was successfully displayed at the cell surface, virtually no full-length H:gm was exposed to the medium due to extensive proteolytic cleavage of the N-terminal region. In the present study, we addressed this issue by expressing a truncated H:gm variant (H:gmd) covering only the serotype-specific central region. This protein was also expressed in fusion to SefA (H:gmdSefA) to understand if the excellent translocation properties of SefA could be used to enhance the secretion and immunogenicity. RESULTS: H:gmd and H:gmdSefA were both successfully translocated to the E. coli outer membrane as full-length proteins using the AIDA-I system. Whole-cell flow cytometric analysis confirmed that both antigens were displayed and accessible from the extracellular environment. In contrast to H:gm, the H:gmd protein was not only expressed as full-length protein, but it also seemed to promote the display of the protein fusion H:gmdSefA. Moreover, the epitopes appeared to be recognized by HT-29 intestinal cells, as measured by induction of the pro-inflammatory interleukin 8. CONCLUSIONS: We believe this study to be an important step towards a live bacterial vaccine against Salmonella due to the central role of the flagellar antigen H:gm and SefA in Salmonella infections and the corresponding immune responses against Salmonella.


Subject(s)
Bacterial Vaccines/immunology , Cell Membrane/metabolism , Escherichia coli/metabolism , Salmonella enteritidis/metabolism , Humans
12.
Bioprocess Biosyst Eng ; 37(8): 1685-93, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24525833

ABSTRACT

The autotransporter family of Gram-negative protein exporters has been exploited for surface expression of recombinant passenger proteins. While the passenger in some cases was successfully translocated, a major problem has been low levels of full-length protein on the surface due to proteolysis following export over the cytoplasmic membrane. The aim of the present study was to increase the surface expression yield of the model protein SefA, a Salmonella enterica fimbrial subunit with potential for use in vaccine applications, by reducing this proteolysis through process design using Design of Experiments methodology. Cultivation temperature and pH, hypothesized to influence periplasmic protease activity, as well as inducer concentration were the parameters selected for optimization. Through modification of these parameters, the total surface expression yield of SefA was increased by 200 %. At the same time, the yield of full-length protein was increased by 300 %, indicating a 33 % reduction in proteolysis.


Subject(s)
Escherichia coli K12/growth & development , Fimbriae Proteins/biosynthesis , Gene Expression , Salmonella enterica/genetics , Escherichia coli K12/genetics , Fimbriae Proteins/genetics , Hydrogen-Ion Concentration , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
13.
Appl Environ Microbiol ; 80(7): 2293-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24487538

ABSTRACT

Chiral amines are important for the chemical and pharmaceutical industries, and there is rapidly growing interest to use transaminases for their synthesis. Since the cost of the enzyme is an important factor for process economy, the use of whole-cell biocatalysts is attractive, since expensive purification and immobilization steps can be avoided. Display of the protein on the cell surface provides a possible way to reduce the mass transfer limitations of such biocatalysts. However, transaminases need to dimerize in order to become active, and furthermore, they require the cofactor pyridoxal phosphate; consequently, successful transaminase surface expression has not been reported thus far. In this work, we produced an Arthrobacter citreus ω-transaminase in Escherichia coli using a surface display vector based on the autotransporter adhesin involved in diffuse adherence (AIDA-I), which has previously been used for display of dimeric proteins. The correct localization of the transaminase in the E. coli outer membrane and its orientation toward the cell exterior were verified. Furthermore, transaminase activity was detected exclusively in the outer membrane protein fraction, showing that successful dimerization had occurred. The transaminase was found to be present in both full-length and proteolytically degraded forms. The removal of this proteolysis is considered to be the main obstacle to achieving sufficient whole-cell transaminase activity.


Subject(s)
Escherichia coli/enzymology , Membrane Proteins/metabolism , Transaminases/metabolism , Arthrobacter/enzymology , Arthrobacter/genetics , Cell Surface Display Techniques , Escherichia coli/genetics , Membrane Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transaminases/genetics
14.
Biotechnol Bioeng ; 111(6): 1108-15, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24382675

ABSTRACT

Lignocellulosic waste is a naturally abundant biomass and is therefore an attractive material to use in second generation biorefineries. Microbial growth on the monosaccharides present in hydrolyzed lignocellulose is however associated with several obstacles whereof one is the lack of simultaneous uptake of the sugars. We have studied the aerobic growth of Escherichia coli on D-glucose, D-xylose, and L-arabinose and for simultaneous uptake to occur, both the carbon catabolite repression mechanism (CCR) and the AraC repression of xylose uptake and metabolism had to be removed. The strain AF1000 is a MC4100 derivative that is only able to assimilate arabinose after a considerable lag phase, which is unsuitable for commercial production. This strain was successfully adapted to growth on L-arabinose and this led to simultaneous uptake of arabinose and xylose in a diauxic growth mode following glucose consumption. In this strain, a deletion in the phosphoenolpyruvate:phosphotransferase system (PTS) for glucose uptake, the ptsG mutation, was introduced. The resulting strain, PPA652ara simultaneously consumed all three monosaccharides at a maximum specific growth rate of 0.59 h(-1) , 55% higher than for the ptsG mutant alone. Also, no residual sugar was present in the cultivation medium. The potential of PPA652ara is further acknowledged by the performance of AF1000 during fed-batch processing on a mixture of D-glucose, D-xylose, and L-arabinose. The conclusion is that without the removal of both layers of carbon uptake control, this process results in accumulation of pentoses and leads to a reduction of the specific growth rate by 30%.


Subject(s)
Arabinose/metabolism , Escherichia coli/growth & development , Escherichia coli/metabolism , Glucose/metabolism , Metabolic Engineering , Xylose/metabolism , Aerobiosis , AraC Transcription Factor/genetics , AraC Transcription Factor/metabolism , Biological Transport , Carbon/metabolism , Catabolite Repression , Culture Media/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Deletion , Gene Expression Regulation, Bacterial
15.
Microb Cell Fact ; 11: 118, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-22943700

ABSTRACT

BACKGROUND: The discovery of the autotransporter family has provided a mechanism for surface expression of proteins in laboratory strains of Escherichia coli. We have previously reported the use of the AIDA-I autotransport system to express the Salmonella enterica serovar Enteritidis proteins SefA and H:gm. The SefA protein was successfully exposed to the medium, but the orientation of H:gm in the outer membrane could not be determined due to proteolytic cleavage of the N-terminal detection-tag. The goal of the present work was therefore to construct a vector containing elements that facilitates analysis of surface expression, especially for proteins that are sensitive to proteolysis or otherwise difficult to express. RESULTS: The surface expression system pAIDA1 was created with two detection tags flanking the passenger protein. Successful expression of SefA and H:gm on the surface of E. coli was confirmed with fluorescently labeled antibodies specific for the N-terminal His6-tag and the C-terminal Myc-tag. While both tags were detected during SefA expression, only the Myc-tag could be detected for H:gm. The negative signal indicates a proteolytic cleavage of this protein that removes the His6-tag facing the medium. CONCLUSIONS: Expression levels from pAIDA1 were comparable to or higher than those achieved with the formerly used vector. The presence of the Myc- but not of the His6-tag on the cell surface during H:gm expression allowed us to confirm the hypothesis that this fusion protein was present on the surface and oriented towards the cell exterior. Western blot analysis revealed degradation products of the same molecular weight for SefA and H:gm. The size of these fragments suggests that both fusion proteins have been cleaved at a specific site close to the C-terminal end of the passenger. This proteolysis was concluded to take place either in the outer membrane or in the periplasm. Since H:gm was cleaved to a much greater extent then the three times smaller SefA, it is proposed that the longer translocation time for the larger H:gm makes it more susceptible to proteolysis.


Subject(s)
Escherichia coli/metabolism , Membrane Proteins/metabolism , Antibodies/immunology , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Fluorescent Dyes/chemistry , Histidine/genetics , Histidine/metabolism , Membrane Proteins/genetics , Oligopeptides/genetics , Oligopeptides/metabolism , Plasmids/genetics , Plasmids/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Salmonella/metabolism
16.
Microb Cell Fact ; 10: 72, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21917130

ABSTRACT

BACKGROUND: Bacterial surface display is of interest in many applications, including live vaccine development, screening of protein libraries and the development of whole cell biocatalysts. The goal of this work was to understand which parameters result in production of large quantities of cells that at the same time express desired levels of the chosen protein on the cell surface. For this purpose, staphylococcal protein Z was expressed using the AIDA autotransporter in Escherichia coli. RESULTS: The use of an OmpT-negative E. coli mutant resulted in successful expression of the protein on the surface, while a clear degradation pattern was found in the wild type. The expression in the mutant resulted also in a more narrow distribution of the surface-anchored protein within the population. Medium optimisation showed that minimal medium with glucose gave more than four times as high expression as LB-medium. Glucose limited fed-batch was used to increase the cell productivity and the highest protein levels were found at the highest feed rates. A maintained high surface expression up to cell dry weights of 18 g l-1 could also be achieved by repeated glucose additions in batch cultivation where production was eventually reduced by low oxygen levels. In spite of this, the distribution in the bacterial population of the surface protein was narrower using the batch technique. CONCLUSIONS: A number of parameters in recombinant protein production were seen to influence the surface expression of the model protein with respect both to the productivity and to the display on the individual cell. The choice of medium and the cell design to remove proteolytic cleavage were however the most important. Both fed-batch and batch processing can be successfully used, but prolonged batch processing is probably only possible if the chosen strain has a low acetic acid production.


Subject(s)
Adhesins, Escherichia coli/metabolism , Bacterial Outer Membrane Proteins/genetics , Batch Cell Culture Techniques/methods , Escherichia coli/genetics , Gene Expression , Staphylococcal Protein A/chemistry , Staphylococcal Protein A/genetics , Adhesins, Escherichia coli/genetics , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Culture Media/metabolism , Escherichia coli/growth & development , Escherichia coli/metabolism , Protein Engineering , Protein Sorting Signals , Protein Structure, Tertiary , Staphylococcal Protein A/metabolism
17.
Microb Cell Fact ; 10: 35, 2011 May 17.
Article in English | MEDLINE | ID: mdl-21586123

ABSTRACT

BACKGROUND: The production of integral membrane spanning proteins (IMP's) constitutes a bottleneck in pharmaceutical development. It was long considered that the state-of-the-art was to produce the proteins as inclusion bodies using a powerful induction system. However, the quality of the protein was compromised and the production of a soluble protein that is incorporated into the membrane from which it is extracted is now considered to be a better method. Earlier research has indicated that a slower rate of protein synthesis might overcome the tendency to form inclusion bodies. We here suggest the use of a set of E. coli mutants characterized by a slower rate of growth and protein synthesis as a tool for increasing the amount of soluble protein in high- throughput protein production processes. RESULTS: A set of five IMP's was chosen which were expressed in three mutants and the corresponding WT cell (control). The mutations led to three different substrate uptake rates, two of which were considerably slower than that of the wild type. Using the mutants, we were able to express three out of the five membrane proteins. Most successful was the mutant growing at 50% of the wild type growth rate. A further effect of a low growth rate is a low acetic acid formation, and we believe that this is a possible reason for the better production. This hypothesis was further supported by expression from the BL21(DE3) strain, using the same plasmid. This strain grows at a high growth rate but nevertheless yields only small amounts of acetic acid. This strain was also able to express three out of the five IMP's, although at lower quantities. CONCLUSIONS: The use of mutants that reduce the specific substrate uptake rate seems to be a versatile tool for overcoming some of the difficulties in the production of integral membrane spanning proteins. A set of strains with mutations in the glucose uptake system and with a lower acetic acid formation were able to produce three out of five membrane proteins that it was not possible to produce with the corresponding wild type.


Subject(s)
Acetic Acid/metabolism , Escherichia coli/metabolism , Glucose/metabolism , Membrane Proteins/biosynthesis , Escherichia coli/genetics , Escherichia coli/growth & development , Glucose/pharmacology , Membrane Proteins/genetics , Mutation
18.
Microb Cell Fact ; 10: 22, 2011 Apr 11.
Article in English | MEDLINE | ID: mdl-21481238

ABSTRACT

BACKGROUND: Salmonella enterica serotype Enteritidis (SE) is considered to be one of the most potent pathogenic Salmonella serotypes causing food-borne disease in humans. Since a live bacterial vaccine based on surface display of antigens has many advantages over traditional vaccines, we have studied the surface display of the SE antigenic proteins, H:gm and SefA in Escherichia coli by the ß-autotransporter system, AIDA. This procedure was compared to protein translocation in Staphylococcus carnosus, using a staphylococci hybrid vector earlier developed for surface display of other vaccine epitopes. RESULTS: Both SefA and H:gm were translocated to the outer membrane in Escherichia coli. SefA was expressed to full length but H:gm was shorter than expected, probably due to a proteolytic cleavage of the N-terminal during passage either through the periplasm or over the membrane. FACS analysis confirmed that SefA was facing the extracellular environment, but this could not be conclusively established for H:gm since the N-terminal detection tag (His6) was cleaved off. Polyclonal salmonella antibodies confirmed the sustained antibody-antigen binding towards both proteins. The surface expression data from Staphylococcus carnosus suggested that the H:gm and SefA proteins were transported to the cell wall since the detection marker was displayed by FACS analysis. CONCLUSION: Apart from the accumulated knowledge and the existence of a wealth of equipment and techniques, the results indicate the selection of E. coli for further studies for surface expression of salmonella antigens. Surface expression of the full length protein facing the cell environment was positively proven by standard analysis, and the FACS signal comparison to expression in Staphylococcus carnosus shows that the distribution of the surface protein on each cell was comparatively very narrow in E. coli, the E. coli outer membrane molecules can serve as an adjuvant for the surface antigenic proteins and multimeric forms of the SefA protein were detected which would probably be positive for the realisation of a strong antigenic property. The detection of specific and similar proteolytic cleavage patterns for both the proteins provides a further starting point for the investigation and development of the Escherichia coli AIDA autotransporter efficiency.


Subject(s)
Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Epitopes/metabolism , Escherichia coli/genetics , Gene Expression , Membrane Proteins/metabolism , Salmonella enterica/genetics , Staphylococcus/genetics , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Cloning, Molecular , Epitopes/genetics , Escherichia coli/metabolism , Membrane Proteins/genetics , Protein Transport , Salmonella enterica/metabolism , Staphylococcus/metabolism
19.
J Biotechnol ; 135(4): 358-65, 2008 Jul 31.
Article in English | MEDLINE | ID: mdl-18579250

ABSTRACT

The feed profile of glucose during fedbatch cultivation could be used to influence the retention of the periplasmic product ZZ-cutinase. An increased feed rate led to a higher production rate but also to an increased specific leakage, which reduced the periplasmic retention. Three growth rates: 0.3, 0.2 and 0.1 h(-1) where studied and resulted in 20, 9 and 6%, respectively, of the total ZZ-cutinase accumulating in the medium. It was also shown that leakage during fedbatch production of a Fab fragment was also influenced by the feed rate in a similar manner to ZZ-cutinase. If intracellular product accumulation is desired the advantage of a high productivity, resulting from a high substrate feed rate, is diminished because of a reduced product retention. Biochemical analysis revealed that the growth rate, resulting from a glucose limited feed, influenced the outer membrane protein compositions with respect to OmpF and LamB, whilst OmpA was largely unaffected. As the feed rate increased the amount of total outer membrane protein decreased. When ZZ-cutinase was produced there were further reductions in outer membrane protein accumulation, by 82, 100 and 22% for OmpF, LamB and OmpA, respectively, and the total reduction was almost 60% with a high product formation rate. We suggest that the reduced titre of the outer membrane proteins, OmpF and LamB, may have contributed to a reduced ability for the cell to retain recombinant protein secreted to the periplasm.


Subject(s)
Biotechnology/methods , Carboxylic Ester Hydrolases/metabolism , Escherichia coli/cytology , Escherichia coli/metabolism , Periplasm/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Carboxylic Ester Hydrolases/genetics , Cell Membrane/metabolism , Culture Media , Escherichia coli/growth & development , Immunoglobulin Fab Fragments/metabolism , Molecular Sequence Data , Recombinant Proteins , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...