Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 279(3): 2147-58, 2004 Jan 16.
Article in English | MEDLINE | ID: mdl-14532280

ABSTRACT

X-ray and electron diffraction studies of specific reaction intermediates, or reaction intermediate analogues, have produced a consistent picture of the structural mechanism of light-driven proton pumping by bacteriorhodopsin. Of central importance within this picture is the structure of the L-intermediate, which follows the retinal all-trans to 13-cis photoisomerization step of the K-intermediate and sets the stage for the primary proton transfer event from the positively charged Schiff base to the negatively charged Asp-85. Here we report the structural changes in bacteriorhodopsin following red light illumination at 150 K. Single crystal microspectrophotometry showed that only the L-intermediate is populated in three-dimensional crystals under these conditions. The experimental difference Fourier electron density map and refined crystallographic structure were consistent with those previously presented (Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E. M., and Neutze, R. (2000) Nature 406, 645-648; Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E. M., and Neutze, R. (2001) Photochem. Photobiol. 74, 794-804). Based on the refined crystallographic structures, molecular dynamic simulations were used to examine the influence of the conformational change of the protein that is associated with the K-to-L transition on retinal dynamics. Implications regarding the structural mechanism for proton pumping by bacteriorhodopsin are discussed.


Subject(s)
Bacteriorhodopsins/chemistry , Binding Sites , Crystallization , Hydrogen Bonding , Protein Conformation , Retina/physiology , Temperature , X-Ray Diffraction
2.
Biochim Biophys Acta ; 1605(1-3): 1-13, 2003 Aug 18.
Article in English | MEDLINE | ID: mdl-12907296

ABSTRACT

One of the key problems of molecular bioenergetics is the understanding of the function of redox-driven proton pumps on a molecular level. One such class of proton pumps are the heme-copper oxidases. These enzymes are integral membrane proteins in which proton translocation across the membrane is driven by electron transfer from a low-potential donor, such as, e.g. cytochrome c, to a high-potential acceptor, O(2). Proton pumping is associated with distinct exergonic reaction steps that involve gradual reduction of oxygen to water. During the process of O(2) reduction, unprotonated high pK(a) proton acceptors are created at the catalytic site. Initially, these proton acceptors become protonated as a result of intramolecular proton transfer from a residue(s) located in the membrane-spanning part of the enzyme, but removed from the catalytic site. This residue is then reprotonated from the bulk solution. In cytochrome c oxidase from Rhodobacter sphaeroides, the proton is initially transferred from a glutamate, E(I-286), which has an apparent pK(a) of 9.4. According to a recently published structure of the enzyme, the deprotonation of E(I-286) is likely to result in minor structural changes that propagate to protonatable groups on the proton output (positive) side of the protein. We propose that in this way, the free energy available from the O(2) reduction is conserved during the proton transfer. On the basis of the observation of these structural changes, a possible proton-pumping model is presented in this paper. Initially, the structural changes associated with deprotonation of E(I-286) result in the transfer of a proton to an acceptor for pumped protons from the input (negative) side of the membrane. After reprotonation of E(I-286) this acceptor releases a proton to the output side of the membrane.


Subject(s)
Copper/metabolism , Heme/metabolism , Oxidation-Reduction , Oxidoreductases/physiology , Proton Pumps/physiology , Electron Transport Complex IV/physiology , Models, Biological , Rhodobacter sphaeroides/enzymology
3.
J Mol Biol ; 321(2): 329-39, 2002 Aug 09.
Article in English | MEDLINE | ID: mdl-12144789

ABSTRACT

The structure of cytochrome c oxidase from Rhodobacter sphaeroides has been solved at 2.3/2.8A (anisotropic resolution). This high-resolution structure revealed atomic details of a bacterial terminal oxidase including water molecule positions and a potential oxygen pathway, which has not been reported in other oxidase structures. A comparative study of the wild-type and the EQ(I-286) mutant enzyme revealed structural rearrangements around E(I-286) that could be crucial for proton transfer in this enzyme. In the structure of the mutant enzyme, EQ(I-286), which cannot transfer protons during oxygen reduction, the side-chain of Q(I-286) does not have the hydrogen bond to the carbonyl oxygen of M(I-107) that is seen in the wild-type structure. Furthermore, the Q(I-286) mutant has a different arrangement of water molecules and residues in the vicinity of the Q side-chain. These differences between the structures could reflect conformational changes that take place upon deprotonation of E(I-286) during turnover of the wild-type enzyme, which could be part of the proton-pumping machinery of the enzyme.


Subject(s)
Electron Transport Complex IV/chemistry , Electron Transport Complex IV/genetics , Mutation/genetics , Rhodobacter sphaeroides/enzymology , Binding Sites , Catalysis , Copper/metabolism , Crystallography, X-Ray , Electron Transport Complex IV/metabolism , Hydrogen Bonding , Ligands , Models, Molecular , Oxidation-Reduction , Oxygen/metabolism , Protein Conformation , Protein Subunits , Protons , Rhodobacter sphaeroides/genetics , Water/metabolism , Xenon/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...