Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 159(23)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38108484

ABSTRACT

block2 is an open source framework to implement and perform density matrix renormalization group and matrix product state algorithms. Out-of-the-box it supports the eigenstate, time-dependent, response, and finite-temperature algorithms. In addition, it carries special optimizations for ab initio electronic structure Hamiltonians and implements many quantum chemistry extensions to the density matrix renormalization group, such as dynamical correlation theories. The code is designed with an emphasis on flexibility, extensibility, and efficiency and to support integration with external numerical packages. Here, we explain the design principles and currently supported features and present numerical examples in a range of applications.

2.
Chem Sci ; 13(37): 11119-11125, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36320484

ABSTRACT

The infrared (IR) spectra of protonated water clusters encode precise information on the dynamics and structure of the hydrated proton. However, the strong anharmonic coupling and quantum effects of these elusive species remain puzzling up to the present day. Here, we report unequivocal evidence that the interplay between the proton transfer and the water wagging motions in the protonated water dimer (Zundel ion) giving rise to the characteristic doublet peak is both more complex and more sensitive to subtle energetic changes than previously thought. In particular, hitherto overlooked low-intensity satellite peaks in the experimental spectrum are now unveiled and mechanistically assigned. Our findings rely on the comparison of IR spectra obtained using two highly accurate potential energy surfaces in conjunction with highly accurate state-resolved quantum simulations. We demonstrate that these high-accuracy simulations are important for providing definite assignments of the complex IR signals of fluxional molecules.

3.
J Am Chem Soc ; 144(35): 15932-15937, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36001866

ABSTRACT

The complex electronic structure and unusual potential energy curve of the chromium dimer have fascinated scientists for decades, with agreement between theory and experiment so far elusive. Here, we present a new ab initio simulation of the potential energy curve and vibrational spectrum that significantly improves on all earlier estimates. Our data support a shift in earlier experimental assignments of a cluster of vibrational frequencies by one quantum number. The new vibrational assignment yields an experimentally derived potential energy curve in quantitative agreement with theory across all bond lengths and across all measured frequencies. By solving this long-standing problem, our results raise the possibility of quantitative quantum chemical modeling of transition metal clusters with spectroscopic accuracy.


Subject(s)
Chromium , Quantum Theory , Computer Simulation , Spectrum Analysis , Vibration
4.
J Chem Theory Comput ; 18(2): 749-762, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35060382

ABSTRACT

We explore various ways to group orbitals into clusters in a matrix product state (MPS). We explain how a generic cluster MPS can often lead to an increase in computational cost and instead propose a special cluster structure, involving only the first and last orbitals/sites, with a wider scope for computational advantage. This structure is a natural formalism to describe correlated multireference (MR) theories. We demonstrate the flexibility and usefulness of this approach by implementing various uncontracted MR configuration interaction, perturbation, and linearized coupled cluster theories using an MPS with large cluster sites. Applications to the nitrogen dimer, the chromium dimer, and benzene, including up to triple excitations in the external space, demonstrate the utility of an MPS with up to two large sites. We use our results to analyze the quality of different multireference approximations.

5.
J Chem Phys ; 155(14): 144105, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34654299

ABSTRACT

Double ionization (DI) is a fundamental process that despite its apparent simplicity provides rich opportunities for probing and controlling the electronic motion. Even for the simplest multielectron atom, helium, new DI mechanisms are still being found. To first order in the field strength, a strong external field doubly ionizes the electrons in helium such that they are ejected into the same direction (front-to-back motion). The ejection into opposite directions (back-to-back motion) cannot be described to first order, making it a challenging target for control. Here, we address this challenge and optimize the field with the objective of back-to-back double ionization using a (1 + 1)-dimensional model. The optimization is performed using four different control procedures: (1) short-time control, (2) derivative-free optimization of basis expansions of the field, (3) the Krotov method, and (4) control of the classical equations of motion. All four procedures lead to fields with dominant back-to-back motion. All the fields obtained exploit essentially the same two-step mechanism leading to back-to-back motion: first, the electrons are displaced by the field into the same direction. Second, after the field turns off, the nuclear attraction and the electron-electron repulsion combine to generate the final motion into opposite directions for each electron. By performing quasi-classical calculations, we confirm that this mechanism is essentially classical.

6.
J Chem Theory Comput ; 16(8): 5057-5066, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32573249

ABSTRACT

Simple wave functions of low computational cost but which can achieve qualitative accuracy across the whole potential energy surface (PES) are of relevance to many areas of electronic structure theory as well as to applications to dynamics. Here, we explore a class of simple wave functions, the minimal matrix product state (MMPS), that generalizes many simple wave functions in common use, such as projected mean-field wave functions, geminal wave functions, and generalized valence bond states. By examining the performance of MMPSs for PESs of some prototypical systems, we find that they yield good qualitative behavior across the whole PES, often significantly improving on the aforementioned ansätze.

7.
J Chem Phys ; 151(20): 204102, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31779335

ABSTRACT

We present how to compute vibrational eigenstates with tree tensor network states (TTNSs), the underlying ansatz behind the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method. The eigenstates are computed with an algorithm that is based on the density matrix renormalization group (DMRG). We apply this to compute the vibrational spectrum of acetonitrile (CH3CN) to high accuracy and compare TTNSs with matrix product states (MPSs), the ansatz behind the DMRG. The presented optimization scheme converges much faster than ML-MCTDH-based optimization. For this particular system, we found no major advantage of the more general TTNS over MPS. We highlight that for both TTNS and MPS, the usage of an adaptive bond dimension significantly reduces the amount of required parameters. We furthermore propose a procedure to find good trees.

8.
J Chem Phys ; 148(20): 204309, 2018 May 28.
Article in English | MEDLINE | ID: mdl-29865822

ABSTRACT

Selected resonance states of the deuterated formyl radical in the electronic ground state X̃ 2A' are computed using our recently introduced dynamically pruned discrete variable representation [H. R. Larsson, B. Hartke, and D. J. Tannor, J. Chem. Phys. 145, 204108 (2016)]. Their decay and asymptotic distributions are analyzed and, for selected resonances, compared to experimental results obtained by a combination of stimulated emission pumping and velocity-map imaging of the product D atoms. The theoretical results show good agreement with the experimental kinetic energy distributions. The intramolecular vibrational energy redistribution is analyzed and compared with previous results from an effective polyad Hamiltonian. Specifically, we analyzed the part of the wavefunction that remains in the interaction region during the decay. The results from the polyad Hamiltonian could mainly be confirmed. The C=O stretch quantum number is typically conserved, while the D-C=O bend quantum number decreases. Differences are due to strong anharmonic coupling such that all resonances have major contributions from several zero-order states. For some of the resonances, the coupling is so strong that no further zero-order states appear during the dynamics in the interaction region, even after propagating for 300 ps.

9.
Nat Commun ; 8(1): 1453, 2017 11 13.
Article in English | MEDLINE | ID: mdl-29129928

ABSTRACT

Single-photon ionization is one of the most fundamental light matter interactions in nature, serving as a universal probe of the quantum state of matter. By probing the emitted electron, one can decode the full dynamics of the interaction. When photo-ionization is evolving in the presence of a strong laser field, the fundamental properties of the mechanism can be signicantly altered. Here we demonstrate how the liberated electron can perform a self-probing measurement of such interaction with attosecond precision. Extreme ultraviolet attosecond pulses initiate an electron wavepacket by photo-ionization, a strong infrared field controls its motion, and finally electron-ion collision maps it into re-emission of attosecond radiation bursts. Our measurements resolve the internal clock provided by the self-probing mechanism, obtaining a direct insight into the build-up of photo-ionization in the presence of the strong laser field.

10.
J Phys Chem A ; 120(19): 3296-308, 2016 May 19.
Article in English | MEDLINE | ID: mdl-26977715

ABSTRACT

We describe the mathematical underpinnings of the biorthogonal von Neumann method for quantum mechanical simulations (PvB). In particular, we present a detailed discussion of the important issue of nonorthogonal projection onto subspaces of biorthogonal bases, and how this differs from orthogonal projection. We present various representations of the Schrödinger equation in the reduced basis and discuss their relative merits. We conclude with illustrative examples and a discussion of the outlook and challenges ahead for the PvB representation.

11.
J Comput Chem ; 34(25): 2178-89, 2013 Sep 30.
Article in English | MEDLINE | ID: mdl-23852672

ABSTRACT

We have used unbiased global optimization to fit a reactive force field to a given set of reference data. Specifically, we have employed genetic algorithms (GA) to fit ReaxFF to SiOH data, using an in-house GA code that is parallelized across reference data items via the message-passing interface (MPI). Details of GA tuning turn-ed out to be far less important for global optimization efficiency than using suitable ranges within which the parameters are varied. To establish these ranges, either prior knowledge can be used or successive stages of GA optimizations, each building upon the best parameter vectors and ranges found in the previous stage. We have finally arrive-ed at optimized force fields with smaller error measures than those published previously. Hence, this optimization approach will contribute to converting force-field fitting from a specialist task to an everyday commodity, even for the more difficult case of reactive force fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...