Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Care ; 34(8): 1869-74, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21730284

ABSTRACT

OBJECTIVE: We evaluated whether the triglyceride-to-HDL cholesterol (TG/HDL-C) ratio is associated with insulin resistance (IR) in a large multiethnic cohort of obese youths. RESEARCH DESIGN AND METHODS: Obese youths (1,452) had an oral glucose tolerance test and a fasting lipid profile. Insulin sensitivity was estimated using the whole body insulin sensitivity index (WBISI) and homeostasis model assessment (HOMA)-IR and evaluated, in a subgroup of 146 obese youths, by the hyperinsulinemic-euglycemic clamp. The cohort was divided by ethnicity (612 whites, 357 Hispanics, and 483 African Americans) and then stratified into ethnicity-specific tertiles of TG/HDL-C ratio. Differences across tertiles were evaluated, and the association between the TG/HDL-C ratio and insulin sensitivity (WBISI) was defined by a multiple stepwise linear regression analysis. The area under the receiver operating characteristic (ROC) curve (AUC) was determined to calculate the TG/HDL-C ratio cutoff to identify insulin-resistant subjects by ethnicity. RESULTS: In each ethnic group and across rising tertiles of TG/HDL-C ratio, insulin sensitivity (WBISI) progressively decreased, whereas 2-h glucose and the AUC-glucose progressively increased. The cutoff for TG/HDL-C ratio was 2.27, and the odds of presenting with IR, in youths with TG/HDL-C ratio higher than the cutoff, was 6.023 (95% CI 2.798-12.964; P < 0.001) in white girls and boys, whereas for both Hispanics and African Americans the AUC-ROCs were not significant, thus not allowing the calculation of an optimal cutoff TG/HDL-C value. CONCLUSIONS: The TG/HDL-C ratio is associated with IR mainly in white obese boys and girls and thus may be used with other risk factors to identify subjects at increased risk of IR-driven morbidity.


Subject(s)
Cholesterol, HDL/blood , Insulin Resistance/ethnology , Insulin Resistance/physiology , Obesity/blood , Obesity/ethnology , Triglycerides/blood , Adolescent , Black or African American/statistics & numerical data , Child , Female , Glucose Tolerance Test , Hispanic or Latino/statistics & numerical data , Humans , Male , Obesity/epidemiology , White People/statistics & numerical data
2.
Diabetes Care ; 34(6): 1306-11, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21515842

ABSTRACT

OBJECTIVE: Hemoglobin A(1c) (A1C) has emerged as a recommended diagnostic tool for identifying diabetes and subjects at risk for the disease. This recommendation is based on data in adults showing the relationship between A1C with future development of diabetes and microvascular complications. However, studies in the pediatric population are lacking. RESEARCH DESIGN AND METHODS: We studied a multiethnic cohort of 1,156 obese children and adolescents without a diagnosis of diabetes (male, 40%/female, 60%). All subjects underwent an oral glucose tolerance test (OGTT) and A1C measurement. These tests were repeated after a follow-up time of ∼2 years in 218 subjects. RESULTS: At baseline, subjects were stratified according to A1C categories: 77% with normal glucose tolerance (A1C <5.7%), 21% at risk for diabetes (A1C 5.7-6.4%), and 1% with diabetes (A1C >6.5%). In the at risk for diabetes category, 47% were classified with prediabetes or diabetes, and in the diabetes category, 62% were classified with type 2 diabetes by the OGTT. The area under the curve receiver operating characteristic for A1C was 0.81 (95% CI 0.70-0.92). The threshold for identifying type 2 diabetes was 5.8%, with 78% specificity and 68% sensitivity. In the subgroup with repeated measures, a multivariate analysis showed that the strongest predictors of 2-h glucose at follow-up were baseline A1C and 2-h glucose, independently of age, ethnicity, sex, fasting glucose, and follow-up time. CONCLUSIONS: The American Diabetes Association suggested that an A1C of 6.5% underestimates the prevalence of prediabetes and diabetes in obese children and adolescents. Given the low sensitivity and specificity, the use of A1C by itself represents a poor diagnostic tool for prediabetes and type 2 diabetes in obese children and adolescents.


Subject(s)
Diabetes Mellitus, Type 2/diagnosis , Glycated Hemoglobin/analysis , Obesity/complications , Prediabetic State/diagnosis , Adolescent , Adult , Biomarkers/blood , Child , Child, Preschool , Female , Glucose Tolerance Test , Humans , Male
3.
Hepatology ; 52(4): 1281-90, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20803499

ABSTRACT

UNLABELLED: The genetic factors associated with susceptibility to nonalcoholic fatty liver disease (NAFLD) in pediatric obesity remain largely unknown. Recently, a nonsynonymous single-nucleotide polymorphism (rs738409), in the patatin-like phospholipase 3 gene (PNPLA3) has been associated with hepatic steatosis in adults. In a multiethnic group of 85 obese youths, we genotyped the PNLPA3 single-nucleotide polymorphism, measured hepatic fat content by magnetic resonance imaging and insulin sensitivity by the insulin clamp. Because PNPLA3 might affect adipogenesis/lipogenesis, we explored the putative association with the distribution of adipose cell size and the expression of some adipogenic/lipogenic genes in a subset of subjects who underwent a subcutaneous fat biopsy. Steatosis was present in 41% of Caucasians, 23% of African Americans, and 66% of Hispanics. The frequency of PNPLA3(rs738409) G allele was 0.324 in Caucasians, 0.183 in African Americans, and 0.483 in Hispanics. The prevalence of the G allele was higher in subjects showing hepatic steatosis. Surprisingly, subjects carrying the G allele showed comparable hepatic glucose production rates, peripheral glucose disposal rate, and glycerol turnover as the CC homozygotes. Carriers of the G allele showed smaller adipocytes than those with CC genotype (P = 0.005). Although the expression of PNPLA3, PNPLA2, PPARγ2(peroxisome proliferator-activated receptor gamma 2), SREBP1c(sterol regulatory element binding protein 1c), and ACACA(acetyl coenzyme A carboxylase) was not different between genotypes, carriers of the G allele showed lower leptin (LEP)(P = 0.03) and sirtuin 1 (SIRT1) expression (P = 0.04). CONCLUSION: A common variant of the PNPLA3 gene confers susceptibility to hepatic steatosis in obese youths without increasing the level of hepatic and peripheral insulin resistance. The rs738409 PNPLA3 G allele is associated with morphological changes in adipocyte cell size.


Subject(s)
Fatty Liver/genetics , Lipase/genetics , Obesity/genetics , Adipose Tissue/cytology , Adolescent , Cell Size , Child , Fatty Liver/pathology , Female , Gene Expression , Gene Frequency , Genotype , Humans , Liver/metabolism , Male , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...