Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009832

ABSTRACT

The COVID-19 pandemic reminded us of the urgent need for new antivirals to control emerging infectious diseases and potential future pandemics. Immunotherapy has revolutionized oncology and could complement the use of antivirals, but its application to infectious diseases remains largely unexplored. Nucleoside analogs are a class of agents widely used as antiviral and anti-neoplastic drugs. Their antiviral activity is generally based on interference with viral nucleic acid replication or transcription. Based on our previous work and computer modeling, we hypothesize that antiviral adenosine analogs, like remdesivir, have previously unrecognized immunomodulatory properties which contribute to their therapeutic activity. In the case of remdesivir, we here show that these properties are due to its metabolite, GS-441524, acting as an Adenosine A2A Receptor antagonist. Our findings support a new rationale for the design of next-generation antiviral agents with dual - immunomodulatory and intrinsic - antiviral properties. These compounds could represent game-changing therapies to control emerging viral diseases and future pandemics.

2.
Front Immunol ; 14: 1244159, 2023.
Article in English | MEDLINE | ID: mdl-37901240

ABSTRACT

Introduction: Triple-negative breast cancer (TNBC) comprises a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy. Despite promising results, the efficacy of immunotherapy and chemo-immunotherapy in TNBC remains limited. There is strong evidence supporting the involvement of Notch signaling in TNBC progression. Expression of Notch1 and its ligand Jagged1 correlate with poor prognosis. Notch inhibitors, including g-secretase inhibitors (GSIs), are quite effective in preclinical models of TNBC. However, the success of GSIs in clinical trials has been limited by their intestinal toxicity and potential for adverse immunological effects, since Notch plays key roles in T-cell activation, including CD8 T-cells in tumors. Our overarching goal is to replace GSIs with agents that lack their systemic toxicity and ideally, do not affect tumor immunity. We identified sulindac sulfide (SS), the active metabolite of FDA-approved NSAID sulindac, as a potential candidate to replace GSIs. Methods: We investigated the pharmacological and immunotherapeutic properties of SS in TNBC models in vitro, ex-vivo and in vivo. Results: We confirmed that SS, a known γ-secretase modulator (GSM), inhibits Notch1 cleavage in TNBC cells. SS significantly inhibited mammosphere growth in all human and murine TNBC models tested. In a transplantable mouse TNBC tumor model (C0321), SS had remarkable single-agent anti-tumor activity and eliminated Notch1 protein expression in tumors. Importantly, SS did not inhibit Notch cleavage in T- cells, and the anti-tumor effects of SS were significantly enhanced when combined with a-PD1 immunotherapy in our TNBC organoids and in vivo. Discussion: Our data support further investigation of SS for the treatment of TNBC, in conjunction with chemo- or -chemo-immunotherapy. Repurposing an FDA-approved, safe agent for the treatment of TNBC may be a cost-effective, rapidly deployable therapeutic option for a patient population in need of more effective therapies.


Subject(s)
Sulindac , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Sulindac/pharmacology , Sulindac/therapeutic use , Amyloid Precursor Protein Secretases , Triple Negative Breast Neoplasms/metabolism , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Disease Models, Animal
3.
Methods Mol Biol ; 2372: 169-177, 2021.
Article in English | MEDLINE | ID: mdl-34417751

ABSTRACT

Long noncoding RNAs (lncRNAs) are a class of RNA transcripts greater than 200 nucleotides in length and makeup a considerable part of the human genome. LncRNAs are well established as crucial players in a myriad of physiological and pathological processes; however, despite their abundance and versatility, the functional characteristics of lncRNAs remain largely unknown predominantly due to the lack of suitable genetic editing strategies. The complexity of their genetic structure and regulation combined with their unique functionality poses several limitations in the application of classic genetic manipulation methods in lncRNA functional studies. Several reports have demonstrated the successful implementation of CRISPR/Cas9 technology in screening and identifying the function of specific lncRNAs. Here, we describe a detailed protocol utilizing CRISPR/Cas9 genetic editing technology for knocking down lncRNAs in vitro.


Subject(s)
Gene Editing , CRISPR-Cas Systems/genetics , Humans , RNA Interference , RNA, Long Noncoding/genetics , Technology
4.
Methods Mol Biol ; 2300: 133-139, 2021.
Article in English | MEDLINE | ID: mdl-33792878

ABSTRACT

MicroRNAs (miRNAs) are a class of small noncoding single-stranded RNA molecules containing 18-22 nucleotides that play an important role in the regulation of gene expression at the post-transcriptional and translational levels. Loss-of-function studies are the fundamental strategy to examine miRNA function and target genes in cellular and molecular biology. Traditional methods for miRNA loss-of-function studies include miRNA-specific antisense inhibitors, miRNA sponges, and genetic knockout. However, efficiency, specificity, and stability of these methods are not adequate. Our study suggests that CRISPR/Cas9 is an economic, convenient, and innovative strategy with high efficiency, specificity, and stability for the modulation of miRNA expression. Herein, we describe a detailed protocol for knocking out miRNA genes in vitro and in vivo with the CRISPR/Cas9 system.


Subject(s)
CRISPR-Cas Systems , Gene Knockdown Techniques/methods , MicroRNAs/genetics , RNA, Messenger/genetics , Animals , DEAD-box RNA Helicases/genetics , Gene Editing , Gene Expression Regulation , Mice , Plasmids/genetics , Ribonuclease III/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...