Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
1.
Aging Biol ; 1(1)2023.
Article in English | MEDLINE | ID: mdl-38124711

ABSTRACT

Age is the greatest risk factor for the development of type 2 diabetes mellitus (T2DM). Age-related decline in organ function is attributed to the accumulation of stochastic damage, including damage to the nuclear genome. Islets of T2DM patients display increased levels of DNA damage. However, whether this is a cause or consequence of the disease has not been elucidated. Here, we asked if spontaneous, endogenous DNA damage in ß-cells can drive ß-cell dysfunction and diabetes, via deletion of Ercc1, a key DNA repair gene, in ß-cells. Mice harboring Ercc1-deficient ß-cells developed adult-onset diabetes as demonstrated by increased random and fasted blood glucose levels, impaired glucose tolerance, and reduced insulin secretion. The inability to repair endogenous DNA damage led to an increase in oxidative DNA damage and apoptosis in ß-cells and a significant loss of ß-cell mass. Using electron microscopy, we identified ß-cells in clear distress that showed an increased cell size, enlarged nuclear size, reduced number of mature insulin granules, and decreased number of mitochondria. Some ß-cells were more affected than others consistent with the stochastic nature of spontaneous DNA damage. Ercc1-deficiency in ß-cells also resulted in loss of ß-cell function as glucose-stimulated insulin secretion and mitochondrial function were impaired in islets isolated from mice harboring Ercc1-deficient ß-cells. These data reveal that unrepaired endogenous DNA damage is sufficient to drive ß-cell dysfunction and provide a mechanism by which age increases the risk of T2DM.

3.
JHEP Rep ; 5(6): 100729, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37179785

ABSTRACT

Background & Aims: Primary sclerosing cholangitis (PSC) is a chronic, progressive cholestatic liver disease that can lead to end-stage liver disease and cholangiocarcinoma. High-dose ursodeoxycholic acid (hd-UDCA, 28-30 mg/kg/day) was evaluated in a previous multicentre, randomised placebo-controlled trial; however, the study was discontinued early because of increased liver-related serious adverse events (SAEs), despite improvement in serum liver biochemical tests. We investigated longitudinal changes in serum miRNA and cytokine profiles over time among patients treated with either hd-UDCA or placebo in this trial as potential biomarkers for PSC and response to hd-UDCA, as well as to understand the toxicity associated with hd-UDCA treatment. Methods: Thirty-eight patients with PSC were enrolled in a multicentred, randomised, double-blinded trial of hd-UDCA vs. placebo. Results: Significant alterations in serum miRNA profiles were found over time in both patients treated with hd-UDCA or placebo. Additionally, there were striking differences between miRNA profiles in patients treated with hd-UDCA compared with placebo. In patients treated with placebo, the changes in concentration of serum miRNAs miR-26a, miR-199b-5p, miR-373, and miR-663 suggest alterations of inflammatory and cell proliferative processes consistent with disease progression. However, patients treated with hd-UDCA exhibited a more pronounced differential expression of serum miRNAs, suggesting that hd-UDCA induces significant cellular miRNA changes and tissue injury. Pathway enrichment analysis for UDCA-associated miRNAs suggested unique dysregulation of cell cycle and inflammatory response pathways. Conclusions: Patients with PSC have distinct miRNAs in the serum and bile, although the implications of these unique patterns have not been studied longitudinally or in relation to adverse events related to hd-UDCA. Our study demonstrates marked changes in miRNA serum profiles with hd-UDCA treatment and suggests mechanisms for the increased liver toxicity with therapy. Impact and implications: Using serum samples from patients with PSC enrolled in a clinical trial comparing hd-UDCA with placebo, our study found distinct miRNA changes in patients with PSC who are treated with hd-UDCA over a period of time. Our study also noted distinct miRNA patterns in patients who developed SAEs during the study period.

4.
Gastroenterology ; 165(1): 228-243.e2, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37059338

ABSTRACT

BACKGROUND & AIMS: We reported that cholangiocyte senescence, regulated by the transcription factor ETS proto-oncogene 1 (ETS1), is a pathogenic feature of primary sclerosing cholangitis (PSC). Furthermore, histone 3 lysine 27 is acetylated at senescence-associated loci. The epigenetic readers, bromodomain and extra-terminal domain (BET) proteins, bind acetylated histones, recruit transcription factors, and drive gene expression. Thus, we tested the hypothesis that BET proteins interact with ETS1 to drive gene expression and cholangiocyte senescence. METHODS: We performed immunofluorescence for BET proteins (BRD2 and 4) in liver tissue from liver tissue from PSC patients and a mouse PSC model. Using normal human cholangiocytes (NHCs), NHCs experimentally induced to senescence (NHCsen), and PSC patient-derived cholangiocytes (PSCDCs), we assessed senescence, fibroinflammatory secretome, and apoptosis after BET inhibition or RNA interference depletion. We assessed BET interaction with ETS1 in NHCsen and tissues from PSC patient, and the effects of BET inhibitors on liver fibrosis, senescence, and inflammatory gene expression in mouse models. RESULTS: Tissue from patients with PSC and a mouse PSC model exhibited increased cholangiocyte BRD2 and 4 protein (∼5×) compared with controls without disease. NHCsen exhibited increased BRD2 and 4 (∼2×), whereas PSCDCs exhibited increased BRD2 protein (∼2×) relative to NHC. BET inhibition in NHCsen and PSCDCs reduced senescence markers and inhibited the fibroinflammatory secretome. ETS1 interacted with BRD2 in NHCsen, and BRD2 depletion diminished NHCsen p21 expression. BET inhibitors reduced senescence, fibroinflammatory gene expression, and fibrosis in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine-fed and Mdr2-/- mouse models. CONCLUSION: Our data suggest that BRD2 is an essential mediator of the senescent cholangiocyte phenotype and is a potential therapeutic target for patients with PSC.


Subject(s)
Cholangitis, Sclerosing , Animals , Mice , Humans , Cholangitis, Sclerosing/pathology , Liver/pathology , Gene Expression Regulation , Histones/metabolism , Proto-Oncogenes , Epigenesis, Genetic
5.
Exposome ; 3(1): osac011, 2023.
Article in English | MEDLINE | ID: mdl-36687160

ABSTRACT

Primary sclerosing cholangitis (PSC) is a complex bile duct disorder. Its etiology is incompletely understood, but environmental chemicals likely contribute to risk. Patients with PSC have an altered bile metabolome, which may be influenced by environmental chemicals. This novel study utilized state-of-the-art high-resolution mass spectrometry (HRMS) with bile samples to provide the first characterization of environmental chemicals and metabolomics (collectively, the exposome) in PSC patients located in the United States of America (USA) (n = 24) and Norway (n = 30). First, environmental chemical- and metabolome-wide association studies were conducted to assess geographic-based similarities and differences in the bile of PSC patients. Nine environmental chemicals (false discovery rate, FDR < 0.20) and 3143 metabolic features (FDR < 0.05) differed by site. Next, pathway analysis was performed to identify metabolomic pathways that were similarly and differentially enriched by the site. Fifteen pathways were differentially enriched (P < .05) in the categories of amino acid, glycan, carbohydrate, energy, and vitamin/cofactor metabolism. Finally, chemicals and pathways were integrated to derive exposure-effect correlation networks by site. These networks demonstrate the shared and differential chemical-metabolome associations by site and highlight important pathways that are likely relevant to PSC. The USA patients demonstrated higher environmental chemical bile content and increased associations between chemicals and metabolic pathways than those in Norway. Polychlorinated biphenyl (PCB)-118 and PCB-101 were identified as chemicals of interest for additional investigation in PSC given broad associations with metabolomic pathways in both the USA and Norway patients. Associated pathways include glycan degradation pathways, which play a key role in microbiome regulation and thus may be implicated in PSC pathophysiology.

6.
Eur Radiol Exp ; 6(1): 58, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36396865

ABSTRACT

BACKGROUND: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease that can lead to cirrhosis and hepatic decompensation. However, predicting future outcomes in patients with PSC is challenging. Our aim was to extract magnetic resonance imaging (MRI) features that predict the development of hepatic decompensation by applying algebraic topology-based machine learning (ML). METHODS: We conducted a retrospective multicenter study among adults with large duct PSC who underwent MRI. A topological data analysis-inspired nonlinear framework was used to predict the risk of hepatic decompensation, which was motivated by algebraic topology theory-based ML. The topological representations (persistence images) were employed as input for classification to predict who developed early hepatic decompensation within one year after their baseline MRI. RESULTS: We reviewed 590 patients; 298 were excluded due to poor image quality or inadequate liver coverage, leaving 292 potentially eligible subjects, of which 169 subjects were included in the study. We trained our model using contrast-enhanced delayed phase T1-weighted images on a single center derivation cohort consisting of 54 patients (hepatic decompensation, n = 21; no hepatic decompensation, n = 33) and a multicenter independent validation cohort of 115 individuals (hepatic decompensation, n = 31; no hepatic decompensation, n = 84). When our model was applied in the independent validation cohort, it remained predictive of early hepatic decompensation (area under the receiver operating characteristic curve = 0.84). CONCLUSIONS: Algebraic topology-based ML is a methodological approach that can predict outcomes in patients with PSC and has the potential for application in other chronic liver diseases.


Subject(s)
Cholangitis, Sclerosing , Liver Diseases , Adult , Humans , Cholangitis, Sclerosing/diagnostic imaging , Cholangitis, Sclerosing/pathology , Machine Learning , Magnetic Resonance Imaging/methods , Multicenter Studies as Topic
7.
Nat Rev Gastroenterol Hepatol ; 19(9): 585-604, 2022 09.
Article in English | MEDLINE | ID: mdl-35562534

ABSTRACT

Polycystic liver diseases (PLDs) are inherited genetic disorders characterized by progressive development of intrahepatic, fluid-filled biliary cysts (more than ten), which constitute the main cause of morbidity and markedly affect the quality of life. Liver cysts arise in patients with autosomal dominant PLD (ADPLD) or in co-occurrence with renal cysts in patients with autosomal dominant or autosomal recessive polycystic kidney disease (ADPKD and ARPKD, respectively). Hepatic cystogenesis is a heterogeneous process, with several risk factors increasing the odds of developing larger cysts. Depending on the causative gene, PLDs can arise exclusively in the liver or in parallel with renal cysts. Current therapeutic strategies, mainly based on surgical procedures and/or chronic administration of somatostatin analogues, show modest benefits, with liver transplantation as the only potentially curative option. Increasing research has shed light on the genetic landscape of PLDs and consequent cholangiocyte abnormalities, which can pave the way for discovering new targets for therapy and the design of novel potential treatments for patients. Herein, we provide a critical and comprehensive overview of the latest advances in the field of PLDs, mainly focusing on genetics, pathobiology, risk factors and next-generation therapeutic strategies, highlighting future directions in basic, translational and clinical research.


Subject(s)
Cysts , Kidney Diseases, Cystic , Liver Diseases , Humans , Liver , Quality of Life
8.
Epigenomics ; 14(8): 481-497, 2022 04.
Article in English | MEDLINE | ID: mdl-35473391

ABSTRACT

Aims: In this methylome-wide association study of cholestatic liver diseases (primary sclerosing cholangitis and primary biliary cholangitis), the authors aimed to elucidate changes in methylome and pathway enrichment to identify candidate genes. Patients & methods: Reduced representation bisulfite sequencing was performed on liver tissue from 58 patients with primary sclerosing cholangitis (n = 13), primary biliary cholangitis (n = 20), alcoholic liver disease (n = 21) and live liver donors (n = 4). Pathway enrichment and network analysis were used to explore key genes/pathways. Results: Both cholestatic liver diseases were characterized by global hypomethylation, with pathway enrichment demonstrating distinct genes and pathways associated with the methylome. Conclusions: This novel study demonstrated that differential methylation in cholestatic liver disease was associated with unique pathways, suggesting it may drive disease pathogenesis.


While DNA is the permanent code that defines each living being, the epigenome comprises sequences attached to DNA that can change with the environment. This means that abnormal changes to the epigenome may lead to disease and that finding and treating these abnormalities may in turn help treat disease. In this study of liver tissue from individuals with two rare liver diseases, primary sclerosing cholangitis and primary biliary cholangitis, the authors found that the epigenome of these two conditions is distinct, suggesting that the epigenome is linked to the development of these conditions and may be the key to treating them.


Subject(s)
Cholangitis, Sclerosing , Liver Cirrhosis, Biliary , Cholangitis, Sclerosing/genetics , DNA Methylation , Epigenome , Humans , Liver , Liver Cirrhosis, Biliary/genetics
9.
Hepatology ; 76(5): 1240-1242, 2022 11.
Article in English | MEDLINE | ID: mdl-35429172
11.
Semin Immunopathol ; 44(4): 527-544, 2022 07.
Article in English | MEDLINE | ID: mdl-35178659

ABSTRACT

The cholangiopathies are a group of liver diseases that affect cholangiocytes, the epithelial cells that line the bile ducts. Biliary atresia (BA), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) are three cholangiopathies with significant immune-mediated pathogenesis where chronic inflammation and fibrosis lead to obliteration of bile ducts and eventual liver cirrhosis. Cellular senescence is a state of cell cycle arrest in which cells become resistant to apoptosis and profusely secrete a bioactive secretome. Recent evidence indicates that cholangiocyte senescence contributes to the pathogenesis of BA, PBC, and PSC. This review explores the role of cholangiocyte senescence in BA, PBC, and PSC, ascertains how cholangiocyte senescence may promote a senescence-associated immunopathology in these cholangiopathies, and provides the rationale for therapeutically targeting senescence as a treatment option for BA, PBC, and PSC.


Subject(s)
Cholangitis, Sclerosing , Bile Ducts/metabolism , Bile Ducts/pathology , Cellular Senescence , Cholangitis, Sclerosing/etiology , Cholangitis, Sclerosing/therapy , Epithelial Cells , Fibrosis , Humans
12.
Curr Opin Gastroenterol ; 38(2): 121-127, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35098933

ABSTRACT

PURPOSE OF REVIEW: Cellular senescence (i.e. permanent withdrawal from the cell cycle) is increasingly recognized as a pathologic feature in a variety of inflammatory liver diseases, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC) and additional cholangiopathies. Herein, we provide an update on the interplay between cholangiocytes, cellular senescence and the cholangiopathies. RECENT FINDINGS: The themes covered by this review include novel models for studying the role of senescent cholangiocytes and the cholangiopathies, identification and modulation of key pathways or molecules regulating cholangiocyte senescence, and discovery of druggable targets to advance therapeutic options for the cholangiopathies. Most recent studies focused on PSC; however, the concepts and findings may be applied to additional cholangiopathies. SUMMARY: Cholangiopathies present unique and divergent clinicopathological features, causes and genetic backgrounds, but share several common disease processes. Cholangiocyte senescence in the cholestatic cholangiopathies, primarily PSC and PBC, is regarded as a key pathogenetic process. Importantly, senescent cholangiocytes exhibit phenotypic features including the senescence-associated secretory phenotype (SASP) and resistance to apoptosis that provide new directions for basic research and new prognostic and therapeutic approaches for clinical practice.


Subject(s)
Cholangitis, Sclerosing , Cholestasis , Cellular Senescence , Cholangitis, Sclerosing/genetics , Epithelial Cells/metabolism , Humans
13.
Annu Rev Pathol ; 17: 251-269, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34724412

ABSTRACT

Polycystic liver disease (PLD) is a group of genetic disorders characterized by progressive development of cholangiocyte-derived fluid-filled hepatic cysts. PLD is the most common manifestation of autosomal dominant and autosomal recessive polycystic kidney diseases and rarely occurs as autosomal dominant PLD. The mechanisms of PLD are a sequence of the primary (mutations in PLD-causative genes), secondary (initiation of cyst formation), and tertiary (progression of hepatic cystogenesis) interconnected molecular and cellular events in cholangiocytes. Nonsurgical, surgical, and limited pharmacological treatment options are currently available for clinical management of PLD. Substantial evidence suggests that pharmacological targeting of the signaling pathways and intracellular processes involved in the progression of hepatic cystogenesis is beneficial for PLD. Many of these targets have been evaluated in preclinical and clinical trials. In this review, we discuss the genetic, molecular, and cellular mechanisms of PLD and clinical and preclinical treatment strategies.


Subject(s)
Cysts , Liver Diseases , Cysts/genetics , Cysts/metabolism , Cysts/therapy , Humans , Liver Diseases/genetics , Liver Diseases/therapy , Signal Transduction
14.
Hepatol Commun ; 6(2): 345-360, 2022 02.
Article in English | MEDLINE | ID: mdl-34519176

ABSTRACT

Primary sclerosing cholangitis (PSC) is a chronic fibroinflammatory disease of the biliary tract characterized by cellular senescence and periportal fibrogenesis. Specific disease features that are cell intrinsic and either genetically or epigenetically mediated remain unclear due in part to a lack of appropriate, patient-specific, in vitro models. Recently, our group developed systems to create induced pluripotent stem cell (iPSC)-derived cholangiocytes (iDCs) and biliary epithelial organoids (cholangioids). We use these models to investigate whether PSC cholangiocytes are intrinsically predisposed to cellular senescence. Skin fibroblasts from healthy controls and subjects with PSC were reprogrammed to pluripotency, differentiated to cholangiocytes, and subsequently grown in three-dimensional matrigel-based culture to induce formation of cholangioids. RNA sequencing (RNA-seq) on iDCs showed significant differences in gene expression patterns, including enrichment of pathways associated with cell cycle, senescence, and hepatic fibrosis, that correlate with PSC. These pathways also overlapped with RNA-seq analysis on isolated cholangiocytes from subjects with PSC. Exome sequencing on the subjects with PSC revealed genetic variants of unknown significance in the genes identified in these pathways. Three-dimensional culture revealed smaller size, lack of a central lumen, and increased cellular senescence in PSC-derived cholangioids. Congruent with this, PSC-derived iDCs showed increased secretion of the extracellular matrix molecule fibronectin as well as the inflammatory cytokines interleukin-6, and chemokine (C-C motif) ligand 2. Conditioned media (CM) from PSC-derived iDCs more potently activated hepatic stellate cells compared to control CM. Conclusion: We demonstrated efficient generation of iDCs and cholangioids from patients with PSC that show disease-specific features. PSC cholangiocytes are intrinsically predisposed to cellular senescence. These features are unmasked following biliary differentiation of pluripotent stem cells and have functional consequences in epithelial organoids.


Subject(s)
Cell Differentiation , Cellular Senescence , Cholangitis, Sclerosing/pathology , Induced Pluripotent Stem Cells/pathology , Adult , Aged , Cells, Cultured , Cholangitis, Sclerosing/metabolism , Culture Media, Conditioned , Cytokines/metabolism , Female , Fibroblasts , Humans , Male , Middle Aged , Phenotype , Sequence Analysis, RNA , Skin/cytology
15.
Hepatol Commun ; 6(5): 965-979, 2022 05.
Article in English | MEDLINE | ID: mdl-34825528

ABSTRACT

Progress in development of prognostic and therapeutic options for the rare cholestatic liver diseases, primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), is hampered by limited knowledge of their pathogeneses. In particular, the potential role of hepatotoxic and/or metabolism-altering environmental chemicals in the pathogenesis of these diseases remains relatively unstudied. Moreover, the extent to which metabolic pathways are altered due to ongoing cholestasis and subsequent liver damage or possibly influenced by hepatotoxic chemicals is poorly understood. In this study, we applied a comprehensive exposomics-metabolomics approach to uncover potential pathogenic contributors to PSC and PBC. We used untargeted high-resolution mass spectrometry to characterize a wide range of exogenous chemicals and endogenous metabolites in plasma and tested them for association with disease. Exposome-wide association studies (EWAS) identified environmental chemicals, including pesticides, additives and persistent pollutants, that were associated with PSC and/or PBC, suggesting potential roles for these compounds in disease pathogenesis. Metabolome-wide association studies (MWAS) found disease-associated alterations to amino acid, eicosanoid, lipid, co-factor, nucleotide, mitochondrial and microbial metabolic pathways, many of which were shared between PSC and PBC. Notably, this analysis implicates a potential role of the 5-lipoxygenase pathway in the pathogenesis of these diseases. Finally, EWAS × MWAS network analysis uncovered linkages between environmental agents and disrupted metabolic pathways that provide insight into potential mechanisms for PSC and PBC. Conclusion: This study establishes combined exposomics-metabolomics as a generalizable approach to identify potentially pathogenic environmental agents and enumerate metabolic alterations that may impact PSC and PBC, providing a foundation for diagnostic and therapeutic strategies.


Subject(s)
Cholangitis, Sclerosing , Cholestasis , Liver Cirrhosis, Biliary , Humans , Liver Cirrhosis, Biliary/diagnosis , Metabolome , Metabolomics
16.
Hepatology ; 75(5): 1110-1122, 2022 05.
Article in English | MEDLINE | ID: mdl-34942041

ABSTRACT

BACKGROUNDS AND AIMS: Polycystic liver disease (PLD) is characterized by defective cholangiocyte cilia that regulate progressive growth of hepatic cysts. Because formation of primary cilia is influenced by autophagy through degradation of proteins involved in ciliogenesis, we hypothesized that ciliary defects in PLD cholangiocytes (PLDCs) originate from autophagy-mediated depletion of ciliogenic proteins ADP-ribosylation factor-like protein 3 (ARL3) and ADP-ribosylation factor-like protein 13B (ARL13B) and ARL-dependent mislocation of a ciliary-localized bile acid receptor, Takeda G-protein-coupled receptor 5 (TGR5), the activation of which enhances hepatic cystogenesis (HCG). The aims here were to determine whether: (1) ciliogenesis is impaired in PLDC, is associated with increased autophagy, and involves autophagy-mediated depletion of ARL3 and ARL13B; (2) depletion of ARL3 and ARL13B in PLDC cilia impacts ciliary localization of TGR5; and (3) pharmacological inhibition of autophagy re-establishes cholangiocyte cilia and ciliary localization of ARL3, ARL3B, and TGR5 and reduces HCG. APPROACH AND RESULTS: By using liver tissue from healthy persons and patients with PLD, in vitro and in vivo models of PLD, and in vitro models of ciliogenesis, we demonstrated that, in PLDCs: ciliogenesis is impaired; autophagy is enhanced; ARL3 and ARL13B are ubiquitinated by HDAC6, depleted in cilia, and present in autophagosomes; depletion of ARL3 and ARL13B impacts ciliary localization of TGR5; and pharmacological inhibition of autophagy with mefloquine and verteporfin re-establishes cholangiocyte cilia and ciliary localization of ARL3, ARL13B, and TGR5 and reduces HCG. CONCLUSIONS: The intersection between autophagy, defective cholangiocyte cilia, and enhanced HCG contributes to PLD progression and can be considered a target for therapeutic interventions.


Subject(s)
Cysts , ADP-Ribosylation Factors/metabolism , ADP-Ribosylation Factors/therapeutic use , Autophagy , Cysts/drug therapy , Humans , Liver/metabolism , Liver Diseases
17.
J Hepatol ; 76(4): 921-933, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34953958

ABSTRACT

BACKGROUND & AIMS: Biliary disease is associated with a proliferative/fibrogenic ductular reaction (DR). p300 is an epigenetic regulator that acetylates lysine 27 on histone 3 (H3K27ac) and is activated during fibrosis. Long non-coding RNAs (lncRNAs) are aberrantly expressed in cholangiopathies, but little is known about how they recruit epigenetic complexes and regulate DR. We investigated epigenetic complexes, including transcription factors (TFs) and lncRNAs, contributing to p300-mediated transcription during fibrosis. METHODS: We evaluated p300 in vivo using tamoxifen-inducible, cholangiocyte-selective, p300 knockout (KO) coupled with bile duct ligation (BDL) and Mdr KO mice treated with SGC-CBP30. Primary cholangiocytes and liver tissue were analyzed for expression of Acta2-as1 lncRNA by qPCR and RNA in situ hybridization. In vitro, we performed RNA-sequencing in human cholangiocytes with a p300 inhibitor. Cholangiocytes were exposed to lipopolysaccharide (LPS) as an injury model. We confirmed formation of a p300/ELK1 complex by immunoprecipitation (IP). RNA IP was used to examine interactions between ACTA2-AS1 and p300. Chromatin IP assays were used to evaluate p300/ELK1 occupancy and p300-mediated H3K27ac. Organoids were generated from ACTA2-AS1-depleted cholangiocytes. RESULTS: BDL-induced DR and fibrosis were reduced in Krt19-CreERT/p300fl/fl mice. Similarly, Mdr KO mice were protected from DR and fibrosis after SGC-CBP30 treatment. In vitro, depletion of ACTA2-AS1 reduced expression of proliferative/fibrogenic markers, reduced LPS-induced cholangiocyte proliferation, and impaired organoid formation. ACTA2-AS1 regulated transcription by facilitating p300/ELK1 binding to the PDGFB promoter after LPS exposure. Correspondingly, LPS-induced H3K27ac was mediated by p300/ELK1 and was reduced in ACTA2-AS1-depleted cholangiocytes. CONCLUSION: Cholangiocyte-selective p300 KO or p300 inhibition attenuate DR/fibrosis in mice. ACTA2-AS1 influences recruitment of p300/ELK1 to specific promoters to drive H3K27ac and epigenetic activation of proliferative/fibrogenic genes. This suggests that cooperation between epigenetic co-activators and lncRNAs facilitates DR/fibrosis in biliary diseases. LAY SUMMARY: We identified a three-part complex containing an RNA molecule, a transcription factor, and an epigenetic enzyme. The complex is active in injured bile duct cells and contributes to activation of genes involved in proliferation and fibrosis.


Subject(s)
RNA, Long Noncoding , Animals , Bile Ducts/pathology , Cell Proliferation , Fibrosis , Lipopolysaccharides , Liver/pathology , Mice , Mice, Knockout , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
18.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34253615

ABSTRACT

We investigated the role of mesothelin (Msln) and thymocyte differentiation antigen 1 (Thy1) in the activation of fibroblasts across multiple organs and demonstrated that Msln-/- mice are protected from cholestatic fibrosis caused by Mdr2 (multidrug resistance gene 2) deficiency, bleomycin-induced lung fibrosis, and UUO (unilateral urinary obstruction)-induced kidney fibrosis. On the contrary, Thy1-/- mice are more susceptible to fibrosis, suggesting that a Msln-Thy1 signaling complex is critical for tissue fibroblast activation. A similar mechanism was observed in human activated portal fibroblasts (aPFs). Targeting of human MSLN+ aPFs with two anti-MSLN immunotoxins killed fibroblasts engineered to express human mesothelin and reduced collagen deposition in livers of bile duct ligation (BDL)-injured mice. We provide evidence that antimesothelin-based therapy may be a strategy for treatment of parenchymal organ fibrosis.


Subject(s)
Cholestasis/drug therapy , Fibroblasts/immunology , Immunotherapy , Liver Cirrhosis/drug therapy , Animals , Cholestasis/genetics , Cholestasis/immunology , Collagen/immunology , Fibroblasts/drug effects , Humans , Immunotoxins/administration & dosage , Liver Cirrhosis/genetics , Liver Cirrhosis/immunology , Mesothelin/genetics , Mesothelin/immunology , Mice , Thy-1 Antigens/genetics , Thy-1 Antigens/immunology
19.
Nature ; 594(7861): 100-105, 2021 06.
Article in English | MEDLINE | ID: mdl-33981041

ABSTRACT

Ageing of the immune system, or immunosenescence, contributes to the morbidity and mortality of the elderly1,2. To define the contribution of immune system ageing to organism ageing, here we selectively deleted Ercc1, which encodes a crucial DNA repair protein3,4, in mouse haematopoietic cells to increase the burden of endogenous DNA damage and thereby senescence5-7 in the immune system only. We show that Vav-iCre+/-;Ercc1-/fl mice were healthy into adulthood, then displayed premature onset of immunosenescence characterized by attrition and senescence of specific immune cell populations and impaired immune function, similar to changes that occur during ageing in wild-type mice8-10. Notably, non-lymphoid organs also showed increased senescence and damage, which suggests that senescent, aged immune cells can promote systemic ageing. The transplantation of splenocytes from Vav-iCre+/-;Ercc1-/fl or aged wild-type mice into young mice induced senescence in trans, whereas the transplantation of young immune cells attenuated senescence. The treatment of Vav-iCre+/-;Ercc1-/fl mice with rapamycin reduced markers of senescence in immune cells and improved immune function11,12. These data demonstrate that an aged, senescent immune system has a causal role in driving systemic ageing and therefore represents a key therapeutic target to extend healthy ageing.


Subject(s)
Aging/immunology , Aging/physiology , Immune System/immunology , Immune System/physiology , Immunosenescence/immunology , Immunosenescence/physiology , Organ Specificity/immunology , Organ Specificity/physiology , Aging/drug effects , Aging/pathology , Animals , DNA Damage/immunology , DNA Damage/physiology , DNA Repair/immunology , DNA Repair/physiology , DNA-Binding Proteins/genetics , Endonucleases/genetics , Female , Healthy Aging/immunology , Healthy Aging/physiology , Homeostasis/immunology , Homeostasis/physiology , Immune System/drug effects , Immunosenescence/drug effects , Male , Mice , Organ Specificity/drug effects , Rejuvenation , Sirolimus/pharmacology , Spleen/cytology , Spleen/transplantation
20.
JHEP Rep ; 3(3): 100250, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33870156

ABSTRACT

BACKGROUND & AIMS: Cholangiocyte senescence is important in the pathogenesis of primary sclerosing cholangitis (PSC). We found that CDKN2A (p16), a cyclin-dependent kinase inhibitor and mediator of senescence, was increased in cholangiocytes of patients with PSC and from a PSC mouse model (multidrug resistance 2; Mdr2 -/-). Given that recent data suggest that a reduction of senescent cells is beneficial in different diseases, we hypothesised that inhibition of cholangiocyte senescence would ameliorate disease in Mdr2 -/- mice. METHODS: We used 2 novel genetic murine models to reduce cholangiocyte senescence: (i) p16Ink4a apoptosis through targeted activation of caspase (INK-ATTAC)xMdr2 -/-, in which the dimerizing molecule AP20187 promotes selective apoptotic removal of p16-expressing cells; and (ii) mice deficient in both p16 and Mdr2. Mdr2 -/- mice were also treated with fisetin, a flavonoid molecule that selectively kills senescent cells. p16, p21, and inflammatory markers (tumour necrosis factor [TNF]-α, IL-1ß, and monocyte chemoattractant protein-1 [MCP-1]) were measured by PCR, and hepatic fibrosis via a hydroxyproline assay and Sirius red staining. RESULTS: AP20187 treatment reduced p16 and p21 expression by ~35% and ~70% (p >0.05), respectively. Expression of inflammatory markers (TNF-α, IL-1ß, and MCP-1) decreased (by 60%, 40%, and 60%, respectively), and fibrosis was reduced by ~60% (p >0.05). Similarly, p16 -/- xMdr2 -/- mice exhibited reduced p21 expression (70%), decreased expression of TNF-α, IL-1ß (60%), and MCP-1 (65%) and reduced fibrosis (~50%) (p >0.05) compared with Mdr2 -/- mice. Fisetin treatment reduced expression of p16 and p21 (80% and 90%, respectively), TNF-α (50%), IL-1ß (50%), MCP-1 (70%), and fibrosis (60%) (p >0.05). CONCLUSIONS: Our data support a pathophysiological role of cholangiocyte senescence in the progression of PSC, and that targeted removal of senescent cholangiocytes is a plausible therapeutic approach. LAY SUMMARY: Primary sclerosing cholangitis is a fibroinflammatory, incurable biliary disease. We previously reported that biliary epithelial cell senescence (cell-cycle arrest and hypersecretion of profibrotic molecules) is an important phenotype in primary sclerosing cholangitis. Herein, we demonstrate that reducing the number of senescent cholangiocytes leads to a reduction in the expression of inflammatory, fibrotic, and senescence markers associated with the disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...