Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
J Immunother Cancer ; 12(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955421

ABSTRACT

BACKGROUND: Adoptive cell therapy using genetically modified T cells to express chimeric antigen receptors (CAR-T) has shown encouraging results, particularly in certain blood cancers. Nevertheless, over 40% of B cell malignancy patients experience a relapse after CAR-T therapy, likely due to inadequate persistence of the modified T cells in the body. IL15, known for its pro-survival and proliferative properties, has been suggested for incorporation into the fourth generation of CAR-T cells to enhance their persistence. However, the potential systemic toxicity associated with this cytokine warrants further evaluation. METHODS: We analyzed the persistence, antitumor efficacy and potential toxicity of anti-mouse CD19 CAR-T cells which express a membrane-bound IL15-IL15Rα chimeric protein (CD19/mbIL15q CAR-T), in BALB/c mice challenged with A20 tumor cells as well as in NSG mice. RESULTS: Conventional CD19 CAR-T cells showed low persistence and poor efficacy in BALB/c mice treated with mild lymphodepletion regimens (total body irradiation (TBI) of 1 Gy). CD19/mbIL15q CAR-T exhibits prolonged persistence and enhanced in vivo efficacy, effectively eliminating established A20 B cell lymphoma. However, this CD19/mbIL15q CAR-T displays important long-term toxicities, with marked splenomegaly, weight loss, transaminase elevations, and significant inflammatory findings in some tissues. Mice survival is highly compromised after CD19/mbIL15q CAR-T cell transfer, particularly if a high TBI regimen is applied before CAR-T cell transfer. CONCLUSION: Tethered IL15-IL15Rα augments the antitumor activity of CD19 CAR-T cells but displays long-term toxicity in immunocompetent mice. Inducible systems to regulate IL15-IL15Rα expression could be considered to control this toxicity.


Subject(s)
Antigens, CD19 , Immunotherapy, Adoptive , Interleukin-15 , Animals , Mice , Antigens, CD19/immunology , Immunotherapy, Adoptive/methods , Humans , Disease Models, Animal , Cell Line, Tumor , Female , Interleukin-15 Receptor alpha Subunit , Receptors, Chimeric Antigen/immunology , Lymphoma/therapy , Lymphoma/immunology , Mice, Inbred BALB C , T-Lymphocytes/immunology , T-Lymphocytes/transplantation
3.
Front Immunol ; 14: 1270843, 2023.
Article in English | MEDLINE | ID: mdl-37795087

ABSTRACT

Despite the potential of CAR-T therapies for hematological malignancies, their efficacy in patients with relapse and refractory Acute Myeloid Leukemia has been limited. The aim of our study has been to develop and manufacture a CAR-T cell product that addresses some of the current limitations. We initially compared the phenotype of T cells from AML patients and healthy young and elderly controls. This analysis showed that T cells from AML patients displayed a predominantly effector phenotype, with increased expression of activation (CD69 and HLA-DR) and exhaustion markers (PD1 and LAG3), in contrast to the enriched memory phenotype observed in healthy donors. This differentiated and more exhausted phenotype was also observed, and corroborated by transcriptomic analyses, in CAR-T cells from AML patients engineered with an optimized CAR construct targeting CD33, resulting in a decreased in vivo antitumoral efficacy evaluated in xenograft AML models. To overcome some of these limitations we have combined CRISPR-based genome editing technologies with virus-free gene-transfer strategies using Sleeping Beauty transposons, to generate CAR-T cells depleted of HLA-I and TCR complexes (HLA-IKO/TCRKO CAR-T cells) for allogeneic approaches. Our optimized protocol allows one-step generation of edited CAR-T cells that show a similar phenotypic profile to non-edited CAR-T cells, with equivalent in vitro and in vivo antitumoral efficacy. Moreover, genomic analysis of edited CAR-T cells revealed a safe integration profile of the vector, with no preferences for specific genomic regions, with highly specific editing of the HLA-I and TCR, without significant off-target sites. Finally, the production of edited CAR-T cells at a larger scale allowed the generation and selection of enough HLA-IKO/TCRKO CAR-T cells that would be compatible with clinical applications. In summary, our results demonstrate that CAR-T cells from AML patients, although functional, present phenotypic and functional features that could compromise their antitumoral efficacy, compared to CAR-T cells from healthy donors. The combination of CRISPR technologies with transposon-based delivery strategies allows the generation of HLA-IKO/TCRKO CAR-T cells, compatible with allogeneic approaches, that would represent a promising option for AML treatment.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Animals , Humans , Aged , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/metabolism , Immunotherapy, Adoptive/methods , Disease Models, Animal
4.
Immunol Invest ; 52(8): 966-984, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37846958

ABSTRACT

BACKGROUND & AIMS: Vaccination with tumor-associated antigen-pulsed dendritic cells leads to specific T-cell response against hepatocellular carcinoma. However, clinical response has been shown to be limited. High regulatory T-cell count is associated with poor prognosis and seems to mediate immune tolerance in hepatocellular carcinoma. Forkhead box P3-peptide inhibitor P60 has been shown to specifically inhibit regulatory T-cell function in murine models. Aim of this study was to investigate whether P60 can improve the immune response induced by vaccination with adenovirus-transduced dendritic cells expressing alpha-fetoprotein in subcutaneous and orthotopic murine models for hepatocellular carcinoma. METHODS: Mice developing subcutaneous or orthotopic HCC received daily treatment with P60 starting at different tumor stages. Additionally, mice were vaccinated twice with dendritic cells expressing alpha-fetoprotein. RESULTS: In a preventive setting prior to tumor engraftment, vaccination with alpha-fetoprotein-expressing dendritic cells significantly decreased tumor growth in a subcutaneous model (p = .0256), but no further effects were achieved by addition of P60. However, P60 enhanced the antitumoral effect of a vaccination with alpha-fetoprotein-expressing dendritic cells in established subcutaneous and orthotopic hepatocellular carcinoma characterized by high Treg levels (p = .011). CONCLUSION: In this study, we showed that vaccination with alpha-fetoprotein-expressing dendritic cells in combination with a specific inhibition of regulatory T-cells by using P60 leads to synergistic tumor inhibition and prolonged survival. This emphasizes the importance of regulatory T-cells inhibition for obtaining an effective antitumoral immune response in hepatocellular carcinoma.


Subject(s)
Cancer Vaccines , Carcinoma, Hepatocellular , Liver Neoplasms , T-Lymphocytes, Regulatory , Animals , Mice , Adenoviridae , alpha-Fetoproteins/genetics , Carcinoma, Hepatocellular/pathology , Dendritic Cells , Immunotherapy , Liver Neoplasms/therapy , T-Lymphocytes, Regulatory/drug effects
5.
Viruses ; 15(9)2023 08 25.
Article in English | MEDLINE | ID: mdl-37766222

ABSTRACT

The regulatory T cell master transcription factor, Forkhead box P3 (Foxp3), has been detected in cancer cells; however, its role in breast tumor pathogenesis remains controversial. Here we assessed Foxp3 tumor intrinsic effects in experimental breast cancer using a Foxp3 binder peptide (P60) that impairs Foxp3 nuclear translocation. Cisplatin upregulated Foxp3 expression in HER2+ and triple-negative breast cancer (TNBC) cells. Foxp3 inhibition with P60 enhanced chemosensitivity and reduced cell survival and migration in human and murine breast tumor cells. We also developed an adenoviral vector encoding P60 (Ad.P60) that efficiently transduced breast tumor cells, reduced cell viability and migration, and improved the cytotoxic response to cisplatin. Conditioned medium from transduced breast tumor cells contained lower levels of IL-10 and improved the activation of splenic lymphocytes. Intratumoral administration of Ad.P60 in breast-tumor-bearing mice significantly reduced tumor infiltration of Tregs, delayed tumor growth, and inhibited the development of spontaneous lung metastases. Our results suggest that Foxp3 exerts protumoral intrinsic effects in breast cancer cells and that gene-therapy-mediated blockade of Foxp3 could constitute a therapeutic strategy to improve the response of these tumors to standard treatment.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Female , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Cisplatin/pharmacology , T-Lymphocytes, Regulatory , Peptides/pharmacology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
6.
Cancer Res ; 83(15): 2513-2526, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37311042

ABSTRACT

Immunotherapy resistance in non-small cell lung cancer (NSCLC) may be mediated by an immunosuppressive microenvironment, which can be shaped by the mutational landscape of the tumor. Here, we observed genetic alterations in the PTEN/PI3K/AKT/mTOR pathway and/or loss of PTEN expression in >25% of patients with NSCLC, with higher frequency in lung squamous carcinomas (LUSC). Patients with PTEN-low tumors had higher levels of PD-L1 and PD-L2 and showed worse progression-free survival when treated with immunotherapy. Development of a Pten-null LUSC mouse model revealed that tumors with PTEN loss were refractory to antiprogrammed cell death protein 1 (anti-PD-1), highly metastatic and fibrotic, and secreted TGFß/CXCL10 to promote conversion of CD4+ lymphocytes into regulatory T cells (Treg). Human and mouse PTEN-low tumors were enriched in Tregs and expressed higher levels of immunosuppressive genes. Importantly, treatment of mice bearing Pten-null tumors with TLR agonists and anti-TGFß antibody aimed to alter this immunosuppressive microenvironment and led to tumor rejection and immunologic memory in 100% of mice. These results demonstrate that lack of PTEN causes immunotherapy resistance in LUSCs by establishing an immunosuppressive tumor microenvironment that can be reversed therapeutically. SIGNIFICANCE: PTEN loss leads to the development of an immunosuppressive microenvironment in lung cancer that confers resistance to anti-PD-1 therapy, which can be overcome by targeting PTEN loss-mediated immunosuppression.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Drug Resistance, Neoplasm , Lung Neoplasms , PTEN Phosphohydrolase , T-Lymphocytes, Regulatory , Animals , Humans , Mice , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Immunotherapy/methods , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Tumor Microenvironment , Drug Resistance, Neoplasm/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use
7.
EMBO Rep ; 24(8): e55884, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37366231

ABSTRACT

Recent studies highlight the importance of baseline functional immunity for immune checkpoint blockade therapies. High-dimensional systemic immune profiling is performed in a cohort of non-small-cell lung cancer patients undergoing PD-L1/PD-1 blockade immunotherapy. Responders show high baseline myeloid phenotypic diversity in peripheral blood. To quantify it, we define a diversity index as a potential biomarker of response. This parameter correlates with elevated activated monocytic cells and decreased granulocytic phenotypes. High-throughput profiling of soluble factors in plasma identifies fractalkine (FKN), a chemokine involved in immune chemotaxis and adhesion, as a biomarker of response to immunotherapy that also correlates with myeloid cell diversity in human patients and murine models. Secreted FKN inhibits lung adenocarcinoma growth in vivo through a prominent contribution of systemic effector NK cells and increased tumor immune infiltration. FKN sensitizes murine lung cancer models refractory to anti-PD-1 treatment to immune checkpoint blockade immunotherapy. Importantly, recombinant FKN and tumor-expressed FKN are efficacious in delaying tumor growth in vivo locally and systemically, indicating a potential therapeutic use of FKN in combination with immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Mice , B7-H1 Antigen/genetics , Biomarkers , Carcinoma, Non-Small-Cell Lung/drug therapy , Chemokine CX3CL1/genetics , Chemokine CX3CL1/therapeutic use , Lung Neoplasms/genetics
8.
Front Immunol ; 14: 1130044, 2023.
Article in English | MEDLINE | ID: mdl-37187754

ABSTRACT

A complex network of interactions exists between the olfactory, immune and central nervous systems. In this work we intend to investigate this connection through the use of an immunostimulatory odorant like menthol, analyzing its impact on the immune system and the cognitive capacity in healthy and Alzheimer's Disease Mouse Models. We first found that repeated short exposures to menthol odor enhanced the immune response against ovalbumin immunization. Menthol inhalation also improved the cognitive capacity of immunocompetent mice but not in immunodeficient NSG mice, which exhibited very poor fear-conditioning. This improvement was associated with a downregulation of IL-1ß and IL-6 mRNA in the brain´s prefrontal cortex, and it was impaired by anosmia induction with methimazole. Exposure to menthol for 6 months (1 week per month) prevented the cognitive impairment observed in the APP/PS1 mouse model of Alzheimer. Besides, this improvement was also observed by the depletion or inhibition of T regulatory cells. Treg depletion also improved the cognitive capacity of the APPNL-G-F/NL-G-F Alzheimer´s mouse model. In all cases, the improvement in learning capacity was associated with a downregulation of IL-1ß mRNA. Blockade of the IL-1 receptor with anakinra resulted in a significant increase in cognitive capacity in healthy mice as well as in the APP/PS1 model of Alzheimer´s disease. These data suggest an association between the immunomodulatory capacity of smells and their impact on the cognitive functions of the animals, highlighting the potential of odors and immune modulators as therapeutic agents for CNS-related diseases.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Menthol/therapeutic use , Amyloid beta-Protein Precursor/genetics , T-Lymphocytes, Regulatory , Mice, Transgenic , Cognition , Immunity
10.
Nat Med ; 29(3): 632-645, 2023 03.
Article in English | MEDLINE | ID: mdl-36928817

ABSTRACT

The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of ∼500 mice and ∼1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8+ T cells with reduced immunosuppressive regulatory T (Treg) cells, while late MYC acquisition in slow progressors was associated with lower CD8+ T cell infiltration and more abundant Treg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8+ T cells versus Treg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8+ T/Treg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8+ T cell cytotoxicity or depleting Treg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials.


Subject(s)
Multiple Myeloma , Mice , Animals , Multiple Myeloma/therapy , Multiple Myeloma/drug therapy , CD8-Positive T-Lymphocytes , Immune Evasion , T-Lymphocytes, Regulatory , Immunotherapy/adverse effects , Tumor Microenvironment/genetics
11.
EMBO Rep ; 24(5): e55326, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36929576

ABSTRACT

The Sin3 transcriptional regulator homolog A (Sin3A) is the core member of a multiprotein chromatin-modifying complex. Its inactivation at the CD4/CD8 double-negative stage halts further thymocyte development. Among various functions, Sin3A regulates STAT3 transcriptional activity, central to the differentiation of Th17 cells active in inflammatory disorders and opportunistic infections. To further investigate the consequences of conditional Sin3A inactivation in more mature precursors and post-thymic T cell, we have generated CD4-Cre and CD4-CreERT2 Sin3AF/F mice. Sin3A inactivation in vivo hinders both thymocyte development and peripheral T-cell survival. In vitro, in Th17 skewing conditions, Sin3A-deficient cells proliferate and acquire memory markers and yet fail to properly upregulate Il17a, Il23r, and Il22. Instead, IL-2+ and FOXP3+ are mostly enriched for, and their inhibition partially rescues IL-17A+ T cells. Notably, Sin3A deletion also causes an enrichment of genes implicated in the mTORC1 signaling pathway, overt STAT3 activation, and aberrant cytoplasmic RORγt accumulation. Thus, together our data unveil a previously unappreciated role for Sin3A in shaping critical signaling events central to the acquisition of immunoregulatory T-cell phenotypes.


Subject(s)
CD4-Positive T-Lymphocytes , Interleukin-17 , Animals , Mice , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Th17 Cells
13.
Cancer Lett ; 561: 216139, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37001752

ABSTRACT

Despite the success of immune checkpoint blockade for cancer therapy, many patients do not respond adequately. We aimed to improve this therapy by optimizing both the antibodies and their delivery route, using small monodomain antibodies (nanobodies) delivered locally with a self-amplifying RNA (saRNA) vector based on Semliki Forest virus (SFV). We generated nanobodies against PD-1 and PD-L1 able to inhibit both human and mouse interactions. Incorporation of a dimerization domain reduced PD-1/PD-L1 IC50 by 8- and 40-fold for anti-PD-L1 and anti-PD-1 nanobodies, respectively. SFV viral particles expressing dimeric nanobodies showed a potent antitumor response in the MC38 model, resulting in >50% complete regressions, and showed better therapeutic efficacy compared to vectors expressing conventional antibodies. These effects were also observed in the B16 melanoma model. Although a short-term expression of nanobodies was observed due to the cytopathic nature of the saRNA vector, it was enough to generate a strong proinflammatory response in tumors, increasing infiltration of NK and CD8+ T cells. Delivery of the SFV vector expressing dimeric nanobodies by local plasmid electroporation, which could be more easily translated to the clinic, also showed a potent antitumor effect.


Subject(s)
Neoplasms , Single-Domain Antibodies , Animals , Humans , Mice , B7-H1 Antigen/genetics , CD8-Positive T-Lymphocytes , Semliki forest virus/genetics , Single-Domain Antibodies/genetics , Programmed Cell Death 1 Receptor/metabolism
14.
Mol Ther ; 31(1): 48-65, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36045586

ABSTRACT

Regulatory T cells overwhelm conventional T cells in the tumor microenvironment (TME) thanks to a FOXP3-driven metabolic program that allows them to engage different metabolic pathways. Using a melanoma model of adoptive T cell therapy (ACT), we show that FOXP3 overexpression in mature CD8 T cells improved their antitumor efficacy, favoring their tumor recruitment, proliferation, and cytotoxicity. FOXP3-overexpressing (Foxp3UP) CD8 T cells exhibited features of tissue-resident memory-like and effector T cells, but not suppressor activity. Transcriptomic analysis of tumor-infiltrating Foxp3UP CD8 T cells showed positive enrichment in a wide variety of metabolic pathways, such as glycolysis, fatty acid (FA) metabolism, and oxidative phosphorylation (OXPHOS). Intratumoral Foxp3UP CD8 T cells exhibited an enhanced capacity for glucose and FA uptake as well as accumulation of intracellular lipids. Interestingly, Foxp3UP CD8 T cells compensated for the loss of mitochondrial respiration-driven ATP production by activating aerobic glycolysis. Moreover, in limiting nutrient conditions these cells engaged FA oxidation to drive OXPHOS for their energy demands. Importantly, their ability to couple glycolysis and OXPHOS allowed them to sustain proliferation under glucose restriction. Our findings demonstrate a hitherto unknown role for FOXP3 in the adaptation of CD8 T cells to TME that may enhance their efficacy in ACT.


Subject(s)
CD8-Positive T-Lymphocytes , Forkhead Transcription Factors , Immunotherapy, Adoptive , Melanoma , Humans , CD8-Positive T-Lymphocytes/immunology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Glucose/metabolism , Melanoma/therapy , Tumor Microenvironment
15.
An Sist Sanit Navar ; 45(3)2022 11 21.
Article in Spanish | MEDLINE | ID: mdl-36413004

ABSTRACT

Currently, among the possible treatments for hepatocellular carcinoma there is group of minimally invasive ablation techniques with wide clinical acceptance due to their greater efficacy and safety in comparison to traditional therapies, low cost, and no need of being admitted to hospital (outpatient treatment program). Irreversible electroporation is a non-thermal ablation technique in which electrical fields are used to create nanopores in the cell membrane that induce tumor cell death. Irreversible electroporation has shown promising results in numerous clinical trials; however, its control on long-term tumor growth and recurrence is inferior in comparison to that of radiofrequency. Combining irreversible electroporation with immunological agents may increase its efficacy in the treatment of focal lesions and metastases. In this work, we present an update on IRE including procedure, mechanism of action, application as a treatment for HCC, and the improvements that have been made in the past few years.


Subject(s)
Ablation Techniques , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/surgery , Electroporation/methods , Ablation Techniques/methods
16.
Front Immunol ; 13: 985886, 2022.
Article in English | MEDLINE | ID: mdl-36405725

ABSTRACT

Immune checkpoint inhibitor (ICI)-based immunotherapy in triple negative breast cancer (TNBC) is achieving limited therapeutic results, requiring the development of more potent strategies. Combination of ICI with vaccination strategies would enhance antitumor immunity and response rates to ICI in patients having poorly infiltrated tumors. In heavily mutated tumors, neoantigens (neoAgs) resulting from tumor mutations have induced potent responses when used as vaccines. Thus, our aim was the identification of immunogenic neoAgs suitable as vaccines in TNBC patients. By using whole exome sequencing, RNAseq and HLA binding algorithms of tumor samples from a cohort of eight TNBC patients, we identified a median of 60 mutations/patient, which originated a putative median number of 98 HLA class I-restricted neoAgs. Considering a group of 27 predicted neoAgs presented by HLA-A*02:01 allele in two patients, peptide binding to HLA was experimentally confirmed in 63% of them, whereas 55% were immunogenic in vivo in HLA-A*02:01+ transgenic mice, inducing T-cells against the mutated but not the wild-type peptide sequence. Vaccination with peptide pools or DNA plasmids expressing these neoAgs induced polyepitopic T-cell responses, which recognized neoAg-expressing tumor cells. These results suggest that TNBC tumors harbor neoAgs potentially useful in therapeutic vaccines, opening the way for new combined immunotherapies.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/therapy , Immunotherapy/methods , Antigens, Neoplasm , HLA-A2 Antigen , Peptides , Mice, Transgenic
17.
Front Immunol ; 13: 991311, 2022.
Article in English | MEDLINE | ID: mdl-36300124

ABSTRACT

Vaccination using optimized strategies may increase response rates to immune checkpoint inhibitors (ICI) in some tumors. To enhance vaccine potency and improve thus responses to ICI, we analyzed the gene expression profile of an immunosuppressive dendritic cell (DC) population induced during vaccination, with the goal of identifying druggable inhibitory mechanisms. RNAseq studies revealed targetable genes, but their inhibition did not result in improved vaccines. However, we proved that immunosuppressive DC had a monocytic origin. Thus, monocyte depletion by gemcitabine administration reduced the generation of these DC and increased vaccine-induced immunity, which rejected about 20% of LLC-OVA and B16-OVA tumors, which are non-responders to anti-PD-1. This improved efficacy was associated with higher tumor T-cell infiltration and overexpression of PD-1/PD-L1. Therefore, the combination of vaccine + gemcitabine with anti-PD-1 was superior to anti-PD-1 monotherapy in both models. B16-OVA tumors benefited from a synergistic effect, reaching 75% of tumor rejection, but higher levels of exhausted T-cells in LLC-OVA tumors co-expressing PD-1, LAG3 and TIM3 precluded similar levels of efficacy. Our results indicate that gemcitabine is a suitable combination therapy with vaccines aimed at enhancing PD-1 therapies by targeting vaccine-induced immunosuppressive DC.


Subject(s)
Cancer Vaccines , Neoplasms , Humans , B7-H1 Antigen , Hepatitis A Virus Cellular Receptor 2 , Immune Checkpoint Inhibitors , Vaccination , Neoplasms/drug therapy , Dendritic Cells , Gemcitabine
18.
Sci Adv ; 8(39): eabo0514, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36179026

ABSTRACT

Identification of new markers associated with long-term efficacy in patients treated with CAR T cells is a current medical need, particularly in diseases such as multiple myeloma. In this study, we address the impact of CAR density on the functionality of BCMA CAR T cells. Functional and transcriptional studies demonstrate that CAR T cells with high expression of the CAR construct show an increased tonic signaling with up-regulation of exhaustion markers and increased in vitro cytotoxicity but a decrease in in vivo BM infiltration. Characterization of gene regulatory networks using scRNA-seq identified regulons associated to activation and exhaustion up-regulated in CARHigh T cells, providing mechanistic insights behind differential functionality of these cells. Last, we demonstrate that patients treated with CAR T cell products enriched in CARHigh T cells show a significantly worse clinical response in several hematological malignancies. In summary, our work demonstrates that CAR density plays an important role in CAR T activity with notable impact on clinical response.

19.
An. sist. sanit. Navar ; 45(3): e1019-e1019, Sep-Dic. 2022. tab
Article in Spanish | IBECS | ID: ibc-213308

ABSTRACT

Entre los tratamientos actuales para el carcinoma hepatocelular se encuentra un grupo de técnicas de ablación mínimamente invasivas con gran aceptación clínica por su mayor eficacia y seguridad respecto a las terapias tradicionales, bajo coste económico y aplicación ambulatoria. La electroporación irreversible es una técnica de ablación no térmica que crea nanoporos en la membrana celular mediante administración de campos eléctricos, induciendo la muerte de las células tumorales. Aunque la electroporación irreversible presenta resultados prometedores en numerosos ensayos clínicos, su control a largo plazo del crecimiento y de las recidivas tumorales es inferior al de la radiofrecuencia. La combinación de electroporación irreversible con agentes inmunológicos podría aumentar su eficacia tanto en el tratamiento de lesiones focales como de metástasis. Esta revisión realiza una actualización sobre la electroporación irreversible: procedimiento, mecanismo de acción, aplicación como tratamiento del carcinoma hepatocelular y alternativas de mejora que están aflorando en los últimos años.(AU)


Currently, among the possible treatments for hepatocellular carcinoma there is group of minimally invasive ablation techniques with wide clinical acceptance due to their greater efficacy and safety in comparison to traditional therapies, low cost, and no need of being admitted to hospital (outpatient treatment program). Irreversible electroporation is a non-thermal ablation technique in which electrical fields are used to create nanopores in the cell membrane that induce tumor cell death. Irreversible electroporation has shown promising results in numerous clinical trials; however, its control on long-term tumor growth and recurrence is inferior in comparison to that of radiofrequency. Combining irreversible electroporation with immunological agents may increase its efficacy in the treatment of focal lesions and metastases. In this work, we present an update on IRE including procedure, mechanism of action, application as a treatment for HCC, and the improvements that have been made in the past few years.(AU)


Subject(s)
Humans , Carcinoma, Hepatocellular , Electroporation , Therapeutics , Medicine, Traditional , Nanopores
20.
Mol Ther Nucleic Acids ; 29: 387-399, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36035753

ABSTRACT

Alphavirus vectors based on self-amplifying RNA (saRNA) generate high and transient levels of transgene expression and induce innate immune responses, making them an interesting tool for antitumor therapy. These vectors are usually delivered as viral particles, but it is also possible to administer them as RNA. We evaluated this possibility by in vivo electroporation of Semliki Forest virus (SFV) saRNA for local treatment of murine colorectal MC38 subcutaneous tumors. Optimization of saRNA electroporation conditions in tumors was performed using an SFV vector coding for luciferase. Then we evaluated the therapeutic potential of this approach using an SFV saRNA coding for interleukin-12 (SFV-IL-12), a proinflammatory cytokine with potent antitumor effects. Delivery of SFV-IL-12 saRNA by electroporation led to improvement in tumor control and higher survival compared with mice treated with electroporation or with SFV-IL-12 saRNA alone. The antitumor efficacy of SFV-IL-12 saRNA electroporation increased by combination with systemic PD-1 blockade. This therapy, which was also validated in a hepatocellular carcinoma tumor model, suggests that local delivery of saRNA by electroporation could be an attractive strategy for cancer immunotherapy. This approach could have easy translation to the clinical practice, especially for percutaneously accessible tumors.

SELECTION OF CITATIONS
SEARCH DETAIL
...