Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 155(22): 224502, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34911305

ABSTRACT

We calculate the distribution probability of hexagonal six-site rings in the disordered state of a cubic or hexagonal ice lattice model with ice rules perfectly obeyed. The mean-field distribution obtained is in significant agreement with those, slightly different among them, obtained by Monte Carlo simulations of the cubic or hexagonal model. The results are discussed in connection with the equilibrium and non-equilibrium transition from disorder to ferroelectric proton order.

2.
J Phys Chem B ; 117(38): 11162-8, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-23627338

ABSTRACT

Using first-principles molecular dynamics (AIMD) and constrained density functional theory (CDFT) we identify the pathway of primary electron transfer in the R. Sphaeroides reaction center from the special pair excited state (P*) to the accessory bacteriochlorophyll (BA). Previous AIMD simulations on the special pair (PLPM) predicted a charge-transfer intermediate formation through the excited-state relaxation along a reaction coordinate characterized by the rotation of an axial histidine (HisM202). To account for the full electron transfer we extend the model to include the primary acceptor BA. In this extended model, the LUMO is primarily localized on the acceptor BA and extends over an interstitial water (water A) that is known to influence the rate of electron transfer (Potter et al. Biochemistry 2005 280, 27155-27164). A vibrational analysis of the dynamical trajectories gives a frequency of 30-35 cm(-1) for a molecular motion involving the hydrogen-bond network around water A, in good agreement with experimental findings (Yakovlev et al. Biochemistry, 2003, 68, 603-610). In its binding pocket water A can act as a switch by breaking and forming hydrogen bonds. With CDFT we calculate the energy required to the formation of the charge-separated state and find it to decrease along the predicted anisotropic reaction coordinate. Furthermore, we observe an increased coupling between the ground and charge-separated state. Water A adapts its hydrogen-bonding network along this reaction coordinate and weakens the hydrogen bond with HisM202. We also present AIMD simulations on the radical cation (P(•+)) showing a weakening of the hydrogen bond between HisL168 and the 3(1)-acetyl of PL. This work demonstrates how proton displacements are crucially coupled to the primary electron transfer and characterizes the reaction coordinate of the initial photoproduct formation.


Subject(s)
Bacterial Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter sphaeroides/metabolism , Bacterial Proteins/metabolism , Bacteriochlorophylls/chemistry , Electron Transport , Electrons , Hydrogen Bonding , Models, Molecular , Photosynthetic Reaction Center Complex Proteins/metabolism , Protons , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...