Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1152180, 2023.
Article in English | MEDLINE | ID: mdl-37435497

ABSTRACT

Introduction: Alteration in the development, maturation, and projection of dopaminergic neurons has been proposed to be associated with several neurological and psychiatric disorders. Therefore, understanding the signals modulating the genesis of human dopaminergic neurons is crucial to elucidate disease etiology and develop effective countermeasures. Methods: In this study, we developed a screening model using human pluripotent stem cells to identify the modulators of dopaminergic neuron genesis. We set up a differentiation protocol to obtained floorplate midbrain progenitors competent to produce dopaminergic neurons and seeded them in a 384-well screening plate in a fully automated manner. Results and Discussion: These progenitors were treated with a collection of small molecules to identify the compounds increasing dopaminergic neuron production. As a proof-of-principle, we screened a library of compounds targeting purine- and adenosine-dependent pathways and identified an adenosine receptor 3 agonist as a candidate molecule to increase dopaminergic neuron production under physiological conditions and in cells invalidated for the HPRT1 gene. This screening model can provide important insights into the etiology of various diseases affecting the dopaminergic circuit development and plasticity and be used to identify therapeutic molecules for these diseases.

2.
Cells ; 10(12)2021 11 24.
Article in English | MEDLINE | ID: mdl-34943799

ABSTRACT

One of the major obstacles to the identification of therapeutic interventions for central nervous system disorders has been the difficulty in studying the step-by-step progression of diseases in neuronal networks that are amenable to drug screening. Recent advances in the field of human pluripotent stem cell (PSC) biology offers the capability to create patient-specific human neurons with defined clinical profiles using reprogramming technology, which provides unprecedented opportunities for both the investigation of pathogenic mechanisms of brain disorders and the discovery of novel therapeutic strategies via drug screening. Many examples not only of the creation of human pluripotent stem cells as models of monogenic neurological disorders, but also of more challenging cases of complex multifactorial disorders now exist. Here, we review the state-of-the art brain cell types obtainable from PSCs and amenable to compound-screening formats. We then provide examples illustrating how these models contribute to the definition of new molecular or functional targets for drug discovery and to the design of novel pharmacological approaches for rare genetic disorders, as well as frequent neurodegenerative diseases and psychiatric disorders.


Subject(s)
Drug Discovery , Models, Biological , Nervous System Diseases/metabolism , Pluripotent Stem Cells/metabolism , Humans , Neurons/pathology , Rare Diseases/genetics
3.
JCI Insight ; 5(4)2020 02 27.
Article in English | MEDLINE | ID: mdl-31990683

ABSTRACT

Lesch-Nyhan disease (LND) is a rare monogenic disease caused by deficiency of the salvage pathway enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). LND is characterized by severe neuropsychiatric symptoms that currently cannot be treated. Predictive in vivo models are lacking for screening and evaluating candidate drugs because LND-associated neurological symptoms are not recapitulated in HGPRT-deficient animals. Here, we used human neural stem cells and neurons derived from induced pluripotent stem cells (iPSCs) of children affected with LND to identify neural phenotypes of interest associated with HGPRT deficiency to develop a target-agnostic-based drug screening system. We screened more than 3000 molecules and identified 6 pharmacological compounds, all possessing an adenosine moiety, that corrected HGPRT deficiency-associated neuronal phenotypes by promoting metabolism compensations in an HGPRT-independent manner. This included S-adenosylmethionine, a compound that had already been used as a compassionate approach to ease the neuropsychiatric symptoms in LND. Interestingly, these compounds compensate abnormal metabolism in a manner complementary to the gold standard allopurinol and can be provided to patients with LND via simple food supplementation. This experimental paradigm can be easily adapted to other metabolic disorders affecting normal brain development and functioning in the absence of a relevant animal model.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Lesch-Nyhan Syndrome/drug therapy , Lesch-Nyhan Syndrome/therapy , Neural Stem Cells/cytology , Allopurinol/therapeutic use , Animals , Case-Control Studies , Cell Differentiation , Disease Models, Animal , Humans , Hypoxanthine Phosphoribosyltransferase/genetics , Neural Stem Cells/enzymology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...