Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Cell Biochem ; 331(1-2): 247-57, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19521669

ABSTRACT

The aim of this study was to assess early preconditioning protection against stunning in conscious sheep and analyze the role of ATP-dependent potassium (KATP) channels in the protective mechanism. Chronically instrumented animals were submitted to a 12 min reversible ischemia and 2 h reperfusion. Early preconditioning, consisting of six 5 min occlusion-5 min reperfusion periods, followed by 45 min normoperfusion before the prolonged ischemia protected against stunning (P < 0.01). In these experimental conditions, current agents used to analyze sarcolemmal (sKATP) and mitochondrial (mKATP) KATP channels could not clearly establish their participation in the protective mechanism. At doses that inhibit sKATP channels they were unable to block preconditioning protection against stunning (glibenclamide) or conversely, blocked preconditioning at doses that do not inhibit these channels (HMR1098). Moreover, both mKATP channel agonists (diazoxide) and antagonists (5HD) protected against stunning, a response that could be due to their effect via an alternative mitochondrial pathway.


Subject(s)
Ischemic Preconditioning, Myocardial , KATP Channels/metabolism , Myocardial Stunning/metabolism , Myocardial Stunning/prevention & control , Action Potentials/physiology , Animals , Hemodynamics , Male , Myocardial Reperfusion Injury/physiopathology , Myocardial Stunning/physiopathology , Recovery of Function , Sheep , Time Factors
2.
Am J Physiol Heart Circ Physiol ; 287(2): H896-904, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15031122

ABSTRACT

The most premature motion change after coronary occlusion is early diastolic thinning of the ischemic left ventricular (LV) wall, with concomitant thickening of the normoperfused wall. We aimed 1). to demonstrate that these early changes are the result of the absence of fluid within the ischemic myocardium (hydraulic skeleton) rather than to cell anoxia and 2). to quantitate the contribution of the lack of hydraulic skeleton to left ventricular asynergy of contraction in seven anesthetized dogs submitted to acute, short-lasting circumflex artery (Cx) occlusion (ischemia) and to perfusion of the Cx with an oxygen-free solution (anoxia). We analyzed the time course of regional work index (WI, area of the LV pressure-wall thickness loop) and regional efficiency (defined as the ratio of WI to the maximum possible work). Interwall asynergy was defined as the difference between the regional efficiency of the anterior and posterior walls. After 9-10 s, posterior wall efficiency decreased 37 +/- 6% with anoxia and 72 +/- 3% with ischemia (P < 0.025), and interwall asynergy was 0 +/- 6% with anoxia and 32 +/- 5% with ischemia (P < 0.05). The contribution of absent hydraulic skeleton to interwall asynergy (calculated as the difference between %asynergy in anoxia and %asynergy in ischemia) was 30 +/- 8% (P < 0.05). In conclusion, the earliest wall motion change observed after acute coronary occlusion, namely ischemic wall thinning concomitant with normoperfused wall thickening during isovolumic relaxation, is the result of the absence of intracoronary fluid. The lack of hydraulic skeleton within the myocardium contributes approximately 30% to interwall asynergy.


Subject(s)
Coronary Disease/physiopathology , Hypoxia/physiopathology , Models, Cardiovascular , Myocardial Ischemia/physiopathology , Myocardium/metabolism , Ventricular Dysfunction, Left/physiopathology , Animals , Coronary Disease/complications , Dogs , Myocardial Contraction , Myocardial Ischemia/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...