Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Appl Spectrosc ; 76(8): 946-958, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35766826

ABSTRACT

The shockwave generated alongside the plasma is an intimately linked, yet often neglected additional input for the characterization of solid samples by laser-induced breakdown spectroscopy (LIBS). The present work introduces a dual LIBS-acoustics sensor that takes advantage of the analysis of the acoustic spectrum yielded by shockwaves produced on different geological samples to enhance the discrimination power of LIBS in materials featuring similar optical emission spectra. Six iron-based minerals were tested at a distance of 2 m using 1064 nm laser light and under pressure values ranging from 7 to 1015 mbar. These experimental parameters were selected to assess the effects of pressure, one of the main factors conditioning the propagation of sound as well as a commonly investigated influence in LIBS experiments. Moreover, precise values for carrying out the analyses were set based on one of the most exciting scenarios in which LIBS data may be enhanced by laser-induced acoustics: space exploration. This is exemplified by the tasks performed by the Mars 2020 SuperCam instrument located onboard the Perseverance rover. Authors evaluated the use of acoustic signals both in the time-domain and frequency-domain in sensitive cases for the distinguishing of minerals exhibiting LIBS spectra featuring almost the same emission lines using PCA schemes for each pressure setting. Thus, we report herein the impact of the surrounding pressure level upon this diagnostic tool. Overall, this paper seeks to show how the analytical potential of simultaneous phenomena taking place during a laser-produced plasma event is subjected to the defined operational conditions.

2.
Anal Chim Acta ; 1191: 339294, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35033264

ABSTRACT

The recycling of refractory scraps began to be forged just over a decade ago. Until then, virtually all refractory scraps were disposed off in landfill sites without any application. Over these past few years, a growing interest and a gain steady momentum of the circular economy, the emergent framing around waste and resource management that promotes the notions of their productive cycling, has been the driving force towards the "zero waste" culture across the spectrum of refractory users and producers. In this way, the circular economy, operated following strategies such as, but not limited to, reusing, recycling, and remanufacturing, has played the pillar role in the different essential value chains of the refractory industry to the entering the new era of secondary raw material supply. In any case, prior to starting any sustainable process, it is really necessary to know the wastes and to classify them. In this context, the present research focused on a refractory residue-classification strategy based on combined laser-induced breakdown spectroscopy (LIBS) and a decision tree algorithm for a qualitative analytical performance. This tandem approach allowed the categorization of a rich set of residues in up to 10 different refractory groups. By choosing original LIBS emission intensities and intensity ratios involving the most relevant constituent elements (Al, Mg, C ‒through its related-species CN‒, Si and Zr) of various refractory wastes, a decision tree with multiple nodes that decided how to classify inputs was designed and trained. Categorization performed from LIBS emission spectra of "blind" refractory residues showed that LIBS data combined with this supervised machine learning algorithm provided good refractory scraps-classification performance, with a classification accuracy of up to 75%. However, some more than justified decisions of the algorithm on allegedly misclassified residues showed that scores for the decision tree could found to be far superior to those obtained. The results achieved support the strategy designed for its industrial implementation, either directly in the iron and steel industry, as the major end-user of refractories, in the refractory waste management industry, or in both.


Subject(s)
Algorithms , Lasers , Decision Trees , Iron , Spectrum Analysis
3.
Anal Chem ; 93(4): 2635-2643, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33400487

ABSTRACT

In the present work, the authors introduce a shape-specific methodology for evaluating the full elemental composition of single micro- and nanoparticles fabricated by laser ablation of bulk targets. For this purpose, bronze samples were directly ablated within an ablation cell, originating dry aerosols consisting of multielemental particles. The in situ generated particles were first optically trapped using air at atmospheric pressure as medium and, then, probed by laser-induced breakdown spectroscopy (LIBS). A key aspect of this technology is the circumvention of possible material losses owing to transference into the inspection instrument while providing the high absolute sensitivity of single-particle LIBS analysis. From the results, we deepen the knowledge in laser-particle interaction, emphasizing fundamental aspects such as matrix effects and polydispersity during laser ablation. The dual role of air as the atomization and excitation source during the laser-particle interaction is discussed on the basis of spectral evidences. Fractionation was one of the main hindrances as it led to particle compositions differing from that of the bulk material. To address possible preferential ablation of some species in the laser-induced plasma, two fluence regimes were used for particle production, 23 and 110 J/cm2. LIBS analysis revealed a relationship between chemical composition of the individual particles and their sizes. At 110 J/cm2, 65% of the dislodged particles were distributed in the range of 100-500 nm, leading to a higher variability of the LIBS spectra among the inspected nanoparticles. In contrast, at 23 J/cm2, around 30% of the aerosolized particles were larger than 1 µm. At this regime, the composition better resembled the bulk material. Therefore, we present a pathway to evaluate how adequate the fabrication parameters are toward yielding particles of a specific morphology while preserving compositional resemblance to the parent bulk sample.

4.
Sci Rep ; 10(1): 1198, 2020 Jan 27.
Article in English | MEDLINE | ID: mdl-31988351

ABSTRACT

In a nanoplasmonic context, copper (Cu) is a potential and interesting surrogate to less accessible metals such as gold, silver or platinum. We demonstrate optical trapping of individual Cu nanoparticles with diameters between 25 and 70 nm and of two ionic Cu nanoparticle species, CuFe2O4 and CuZnFe2O4, with diameters of 90 nm using a near infrared laser and quantify their interaction with the electromagnetic field experimentally and theoretically. We find that, despite the similarity in size, the trapping stiffness and polarizability of the ferrites are significantly lower than those of Cu nanoparticles, thus inferring a different light-particle interaction. One challenge with using Cu nanoparticles in practice is that upon exposure to the normal atmosphere, Cu is spontaneously passivated by an oxide layer, thus altering its physicochemical properties. We theoretically investigate how the presence of an oxide layer influences the optical properties of Cu nanoparticles. Comparisons to experimental observations infer that oxidation of CuNPs is minimal during optical trapping. By finite element modelling we map out the expected temperature increase of the plasmonic Cu nanoparticles during optical trapping and retrieve temperature increases high enough to change the catalytic properties of the particles.

5.
Anal Chem ; 91(11): 7444-7449, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31074601

ABSTRACT

Simultaneous detection of multiple constituents in the characterization of state-of-the-art nanomaterials is an elusive topic to a majority of the analytical techniques covering the field of nanotechnology. Optical catapulting (OC) and optical trapping (OT) have recently been combined with laser-induced breakdown spectroscopy (LIBS) to provide single-nanoparticle resolution and attogram detection power. In the present work, the multielemental capabilities of this approach are demonstrated by subjecting two different types of nanometric ferrite particles to LIBS analysis. Up to three metallic elements in attogram quantities are consistently detected within single laser events. Individual excitation efficiency for each species is quantified from particle spectra showing an exponential correlation between photon production and the energy of the upper level of the monitored atomic line. Moreover, a new sampling strategy based in skimmer-like 3D printed cones that allows for thin dry nanoparticle aerosols to be formed via optical catapulting is introduced. Enhanced sampling resulted in an increase of the sampling throughput by facilitating stable atmospheric-pressure optical trapping of individual particles and spectroscopic chemical characterization within a short timeframe.

6.
Anal Chem ; 90(3): 2079-2087, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29291355

ABSTRACT

A single platform, integrated by a laser-induced breakdown spectroscopy detector and a Raman spectroscopy sensor, has been designed to remotely (5 m) and simultaneously register the elemental and molecular signatures of rocks under Martian surface conditions. From this information, new data fusion architecture at decisions level is proposed for the correct categorization of the rocks. The approach is based on a decision-making process from the sequential checking of the spectral features representing the cationic and anionic counterparts of the specimen. The scrutiny of the LIBS response by using a moving-window algorithm informs on the diversity of the elemental constituents. The output rate of emission lines allows projecting in a loop the elements as the cationic counterpart of the rock. In parallel, the Raman response of the unknown is compared with all the molecular counterparts of the hypothesized cation that are stored in a spectral library. The largest similarity rate unveils the final identity of the unknown. The identification capabilities of the architecture have been underscored through blind tests of 10 natural rocks with different origins. The great majority of forecasts have matched with the real identities of the inspected targets. The strength of this platform to simultaneously acquire the multielemental and the molecular information from a specimen by using the same laser events greatly enhances the "on-surface" missions for the surveillance of mineralogy.

7.
Sensors (Basel) ; 17(12)2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29261126

ABSTRACT

An acoustic spectroscopic approach to detect contents within different packaging, with substantially wider applicability than other currently available subsurface spectroscopies, is presented. A frequency-doubled Nd:YAG (neodymium-doped yttrium aluminum garnet) pulsed laser (13 ns pulse length) operated at 1 Hz was used to generate the sound field of a two-component system at a distance of 50 cm. The acoustic emission was captured using a unidirectional microphone and analyzed in the frequency domain. The focused laser pulse hitting the system, with intensity above that necessary to ablate the irradiated surface, transferred an impulsive force which led the structure to vibrate. Acoustic airborne transients were directly radiated by the vibrating elastic structure of the outer component that excited the surrounding air in contact with. However, under boundary conditions, sound field is modulated by the inner component that modified the dynamical integrity of the system. Thus, the resulting frequency spectra are useful indicators of the concealed content that influences the contributions originating from the wall of the container. High-quality acoustic spectra could be recorded from a gas (air), liquid (water), and solid (sand) placed inside opaque chemical-resistant polypropylene and stainless steel sample containers. Discussion about effects of laser excitation energy and sampling position on the acoustic emission events is reported. Acoustic spectroscopy may complement the other subsurface alternative spectroscopies, severely limited by their inherent optical requirements for numerous detection scenarios.

8.
Angew Chem Int Ed Engl ; 56(45): 14178-14182, 2017 11 06.
Article in English | MEDLINE | ID: mdl-28877398

ABSTRACT

Current trends in nanoengineering are bringing along new structures of diverse chemical compositions that need to be meticulously defined in order to ensure their correct operation. Few methods can provide the sensitivity required to carry out measurements on individual nano-objects without tedious sample pre-treatment or data analysis. In the present study, we introduce a pathway for the elemental identification of single nanoparticles (NPs) that avoids suspension in liquid media by means of optical trapping and laser-induced plasma spectroscopy. We demonstrate spectroscopic detection and identification of individual 25(±3.7) to 70(±10.5) nm in diameter Cu NPs stably trapped in air featuring masses down to 73±35 attograms. We found an increase in the absolute number of photons produced as size of the particles decreased; pointing towards a more efficient excitation of ensembles of only ca. 7×105 Cu atoms in the onset plasma.

9.
Appl Spectrosc ; 71(1): 87-96, 2017 01.
Article in English | MEDLINE | ID: mdl-27852873

ABSTRACT

The present work focuses on the influence of the angle of observation on the emission signal from copper plasmas. Plasma plumes have been generated inside a home-made chamber consisting of two parallel glass windows spaced by 2.5 mm. This chamber allows observing plasma plumes from different collection angles throughout their perimeter, spanning from 20° to 80° with respect to the surface of the Cu target. In order to minimize the observed volume of the plasma, measurements were made from the closest distance possible through a metallic hollow tube. Single-pulse and collinear double-pulse excitation schemes with a Nd:YAG laser (1064 nm, 5 ns) have been investigated. The results have shown that the selection of the best angle to collect light from the plasma is related to the excitation mode. On the other hand, the shot-to-shot signal variability has been found to depend on the shape of plasma plumes. In single-pulse excitation, a good correlation between the observed laser-induced breakdown spectroscopy (LIBS) emission (from spatially confined plumes) and their integrated signal of plasma image has been ascertained. However, this fact was less evident in double-pulse LIBS, which could be due to a different mechanism involved in the ablation process.

10.
Appl Spectrosc ; 70(8): 1364-74, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27449368

ABSTRACT

This study focuses on the analysis of the optical emission response obtained by laser-induced breakdown spectroscopy from energetic nitro compounds in condensed phase sampled in atmospheres of variable composition. The influence of different background gases was evaluated from the characteristic emissions of the excited species coexisting in the plasma plume and conclusions concerning the main pathways involved in the generation of such emission species were extracted. Different reactive (O2, N2, H2) and inert (Ar, He) gases were tested to establish the comparative emission features of organic compounds.

11.
Appl Spectrosc ; 70(4): 618-26, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26957105

ABSTRACT

In this work, the use of multi-pulse excitation has been evaluated as an effective solution to mitigate the preferential ablation of the most volatile elements, namely Sn, Pb, and Zn, observed during laser-induced breakdown spectroscopy (LIBS) analysis of copper-based alloys. The novel remote LIBS prototype used in this experiments featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS). The remote instrument is capable of performing chemical analysis of submersed materials up to a depth of 50 m. Laser-induced breakdown spectroscopy analysis was performed at air pressure settings simulating the conditions during a real subsea analysis. A set of five certified bronze standards with variable concentration of Cu, As, Sn, Pb, and Zn were used. In SP-LIBS, signal emission is strongly sensitive to ambient pressure. In this case, fractionation effect was observed. Multi-pulse excitation circumvents the effect of pressure over the quantitative analysis, thus avoiding the fractionation phenomena observed in single pulse LIBS. The use of copper as internal standard minimizes matrix effects and discrepancies due to variation in ablated mass.

12.
Phys Chem Chem Phys ; 18(4): 2398-408, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26695078

ABSTRACT

During the last few years, laser-induced breakdown spectroscopy (LIBS) has evolved significantly in the molecular sensing area through the optical monitoring of emissions from organic plasmas. Large efforts have been made to study the formation pathways of diatomic radicals as well as their connections with the bonding framework of molecular solids. Together with the structural and chemical-physical properties of molecules, laser ablation parameters seem to be closely tied to the observed spectral signatures. This research focuses on evaluating the impact of laser pulse duration on the production of diatomic species that populate plasmas of organic materials. Differences in relative intensities of spectral signatures from the plasmas of several organic molecules induced in femtosecond (fs) and nanosecond (ns) ablation regimes have been studied. Beyond the abundance and origin of diatomic radicals that seed the plasma, findings reveal the crucial role of the ablation regime in the breakage pattern of the molecule. The laser pulse duration dictates the fragments and atoms resulting from the vaporized molecules, promoting some formation routes at the expense of other paths. The larger amount of fragments formed by fs pulses advocates a direct release of native bonds and a subsequent seeding of the plasma with diatomic species. In contrast, in the ns ablation regime, the atomic recombinations and single displacement processes dominate the contribution to diatomic radicals, as long as atomization of molecules prevails over their progressive decomposition. Consequently, fs-LIBS better reflects correlations between strengths of emissions from diatomic species and molecular structure as compared to ns-LIBS. These new results entail a further step towards the specificity in the analysis of molecular solids by fs-LIBS.

13.
Anal Chim Acta ; 876: 26-38, 2015 May 30.
Article in English | MEDLINE | ID: mdl-25998455

ABSTRACT

Femtosecond laser-induced breakdown spectroscopy (fs-LIBS) has been used for the first time for quantitative determination of nutrients in plant materials from different crops. A highly heterogeneous population of 31 samples, previously analyzed by inductively coupled plasma optical emission spectroscopy, covering a wide range of matrices was interrogated. To tackle the analysis, laser-induced plasmas under argon atmosphere of pellets prepared from sieved cryogenically ground leaves were studied. Predictive functions based on univariate and multivariate modeling of optical emissions associated to macro- (Ca, Mg, and P) and micronutrients (Cu, Fe, Mn and Zn) were designed. Hierarchical cluster analysis was performed to select representative calibration (n(cal)=17) and validation (n(val)=14) datasets. The predictive performance of calibration functions over fs-LIBS data was compared with that attained on spectral information from nanosecond LIBS (ns-LIBS) operating at different wavelengths (1064 nm, 532 nm, and 266 nm). Findings established higher accuracy and less uncertainty on mass fractions quantification from fs-LIBS, whatever the modeling approach. Quality coefficients below 20% for the accuracy error on mass fractions' prediction in unknown samples, and residual predictive deviations in general above 5, were obtained. In contrast, only multivariate modeling satisfactorily handled the non-linear variations of emissions in ns-LIBS, leading to 2-fold decrease in the root mean square error of prediction (RMSEP) of Ca, Mg, P, Cu, Fe, Mn and Zn in comparison with the univariate approach. But still, an averaged quality coefficient about 35% and residual predictive deviations below 3 were found. Similar predictive capabilities were observed when changing the laser wavelength. Although predicted values by ns-LIBS multivariate modeling exhibit better agreement with reference mass fractions as compared to univariate functions, fs-LIBS conducts better quantification of nutrients in plant materials since it is less dependent on the chemical composition of the matrices.


Subject(s)
Calcium/analysis , Crops, Agricultural/chemistry , Magnesium/analysis , Phosphorus/analysis , Trace Elements/analysis , Cluster Analysis , Lasers , Multivariate Analysis , Spectrum Analysis/methods
14.
Talanta ; 137: 182-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25770623

ABSTRACT

LIBS analysis of submerged materials in an underwater archeological site has been performed for the first time. A fiber-optics-based remote instrument was designed for the recognition and identification of archeological assets in the wreck of the Bucentaure (Bay of Cadiz, South of Spain). The LIBS prototype featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS). The use of multi-pulse excitation allowed an increased laser beam energy (up to 95 mJ) transmitted through the optical fiber. This excitation mode results in an improved performance of the equipment in terms of extended range of analysis (to a depth of 50 m) and a broader variety of samples to be analyzed (i.e., rocks, marble, ceramics and concrete). Compared to single-pulse, an intensity enhancement factor of 15× was observed at the same irradiance value, 1.89 GW/cm(2). Thus, a longer pulse duration promotes the heating and melting of the sample, resulting in a greater mass ablated. As a consequence of the optimization of experimental conditions performed in laboratory, underwater characterization of ancient pottery was achieved.

15.
Anal Chem ; 87(5): 2794-801, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25668318

ABSTRACT

Laser ablation of organic compounds has been investigated for almost 30 years now, either in the framework of pulse laser deposition for the assembling of new materials or in the context of chemical sensing. Various monitoring techniques such as atomic and molecular fluorescence, time-of-flight mass spectrometry, and optical emission spectroscopy have been used for plasma diagnostics in an attempt to understand the spectral signature and potential origin of gas-phase ions and fragments from organic plasmas. Photochemical and photophysical processes occurring within these systems are generally much more complex than those suggested by observation of optical emission features. Together with laser ablation parameters, the structural and chemical-physical properties of molecules seem to be closely tied to the observed phenomena. The present manuscript, for the first time, discusses the role of molecular structure in the optical emission of organic plasmas. Factors altering the electronic distribution within the organic molecule have been found to have a direct impact on its ensuing optical emissions. The electron structure of an organic molecule, resulting from the presence, nature, and position of its atoms, governs the breakage of the molecule and, as a result, determines the extent of atomization and fragmentation that has proved to directly impact the emissions of CN radicals and C2 dimers. Particular properties of the molecule respond more positively depending on the laser irradiation wavelength, thereby redirecting the ablation process through photochemical or photothermal decomposition pathways. It is of paramount significance for chemical identification purposes how, despite the large energy stored and dissipated by the plasma and the considerable number of transient species formed, the emissions observed never lose sight of the original molecule.

16.
Int J Legal Med ; 129(4): 807-13, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25432861

ABSTRACT

The diagnosis of drowning can be extremely difficult, especially when the typical morphological signs of drowning are not present, or when the body is in an advanced stage of putrefaction. The main aim of this work is to demonstrate the applicability of laser-induced breakdown spectroscopy (LIBS) to the diagnosis of seawater drowning. Ten teeth samples were selected from eight medico-legal autopsies. A Nd:YAG laser operating at its fundamental wavelength (1,064 nm) was used to generate microplasmas at the sample surface. Strontium (Sr) concentration in tooth samples has been found to be a key factor for the diagnosis of seawater drowning. Spectral differences between the dentin and the enamel were observed. Greater Sr abundance was located in the dentin, with relative standard deviations in the range of 30 to 35%. In addition, chemical images were generated to study the spatial distribution of Sr along the piece. In all cases, Sr content was higher when the cause of the individual death was drowning. A blind experiment was performed to exclude the possibility that the increase of Sr is due to passive diffusion in the blood. The detection of Sr as well as the determination of its distribution by LIBS in dentin seems to be a promising complementary tool for the diagnosis of death by seawater drowning.


Subject(s)
Dentin/chemistry , Drowning/diagnosis , Strontium/analysis , Aged , Forensic Dentistry , Humans , Lasers, Solid-State , Male , Middle Aged , Seawater , Spectrum Analysis
17.
Anal Chem ; 86(10): 5045-52, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24773280

ABSTRACT

The distance between the sensor and the target is a particularly critical factor for an issue as crucial as explosive residues recognition when a laser-assisted spectroscopic technique operates in a standoff configuration. Particularly for laser ablation, variations in operational range influence the induced plasmas as well as the sensitivity of their ensuing optical emissions, thereby confining the attributes used in sorting methods. Though efficient classification models based on optical emissions gathered under specific conditions have been developed, their successful performance on any variable information is limited. Hence, to test new information by a designed model, data must be acquired under operational conditions totally matching those used during modeling. Otherwise, the new expected scenario needs to be previously modeled. To facing both this restriction and this time-consuming mission, a novel strategy is proposed in this work. On the basis of machine learning methods, the strategy stems from a decision boundary function designed for a defined set of experimental conditions. Next, particular semisupervised models to the envisaged conditions are obtained adaptively on the basis of changes in laser fluence and light emission with variation of the sensor-to-target distance. Hence, the strategy requires only a little prior information, therefore ruling out the tedious and time-consuming process of modeling all the expected distant scenes. Residues of ordinary materials (olive oil, fuel oil, motor oils, gasoline, car wax and hand cream) hardly cause confusion in alerting the presence of an explosive (DNT, TNT, RDX, or PETN) when tested within a range from 30 to 50 m with varying laser irradiance between 8.2 and 1.3 GW cm(-2). With error rates of around 5%, the experimental assessments confirm that this semisupervised model suitably addresses the recognition of organic residues on aluminum surfaces under different operational conditions.

18.
Appl Spectrosc ; 68(1): 33-8, 2014.
Article in English | MEDLINE | ID: mdl-24405951

ABSTRACT

The influence of the ambient atmosphere on the dynamics of plasma expansion, besides the interaction between excited plasma and gas molecules, has been studied for specific organic aromatic compounds. To analyze the influence of air on the formation pathways of atomic and molecular species inside the plasma plume, the spectral emissions in laser-induced breakdown spectroscopy (LIBS) of 2,4,6-trinitrotoluene (TNT) and pyrene were compared at different pressure environments, from high vacuum to atmospheric pressure. Pelletized samples of the compounds were introduced in a vacuum chamber for excitation with the fourth harmonic output of an Nd : YAG laser (266 nm). The optical emission signal was collected with an optical fiber connected to a spectrograph fitted with a intensified charge-coupled device detector. Results from LIBS spectra indicate that changes in pressure level affect the kinetics of the characteristic excited species and their spatial distribution inside the plasma plume.

19.
Anal Chim Acta ; 806: 107-16, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24331046

ABSTRACT

The large similarity existing in the spectral emissions collected from organic compounds by laser-induced breakdown spectroscopy (LIBS) is a limiting factor for the use of this technology in the real world. Specifically, among the most ambitious challenges of today's LIBS involves the recognition of an organic residue when neglected on the surface of an object of identical nature. Under these circumstances, the development of an efficient algorithm to disclose the minute differences within this highly complex spectral information is crucial for a realistic application of LIBS in countering explosive threats. An approach cemented on scatter plots of characteristic emission features has been developed to identify organic explosives when located on polymeric surfaces (teflon, nylon and polyethylene). By using selected spectral variables, the approach allows to design a concise classifier for alerting when one of four explosives (DNT, TNT, RDX and PETN) is present on the surface of the polymer. Ordinary products (butter, fuel oil, hand cream, olive oil and motor oil) cause no confusion in the decisions taken by the classifier. With rates of false negatives and false positives below 5%, results demonstrate that the classification algorithm enables to label residues according to their harmful nature in the most demanding scenario for a LIBS sensor.

20.
Rapid Commun Mass Spectrom ; 27(15): 1807-13, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23821575

ABSTRACT

RATIONALE: Analysis of explosive compounds represents an interesting field of work due to the obvious social relevance of these compounds. Direct laser ionization allows the analysis of these high internal energy compounds without sampling or preparation procedures. We have studied nitro-aromatic compounds to understand their mass spectra when directly ionized in the condensed phase, different from the gas-phase studies commonly conducted. METHODS: Direct condensed-phase laser ionization time-of-flight mass spectrometry of high energy density materials has been performed using a 5 ns width quadrupled Nd:YAG laser. No matrix assistance was used. Fine control of the laser energy allowed the study of the fragmentation processes from values close to the ionization threshold to ones where atomic-only mass spectra were recorded. RESULTS: The influence of the variation of extraction conditions on the recorded mass spectra was investigated. For low extraction width pulses, ions with low m/z values were mainly observed, whereas, at higher widths, higher mass fragment ions were also detected while the total ion current was maintained. Therefore, the mass spectra can be modulated to obtain mass spectra containing molecular or atomic information. The onset of ion generation for the different fragment ions was also studied, yielding information that can help to understand the processes involved in the fragmentation pathways of the molecule and in the dissociation mechanisms. Two sampling procedures allowed the prospective use of LIMS as a screening technique for nitro-aromatic-based highly energetic explosives. CONCLUSIONS: Direct analysis of explosive compounds has been performed by laser ionization. A large dependence of the resultant spectra on the laser energy was observed that might be useful for studies of fragmentation pathways. For forensic applications, two sampling procedures might allow the use of LIMS as a screening technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...