Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 22(9): 2997-3012, 2016 09.
Article in English | MEDLINE | ID: mdl-27038309

ABSTRACT

Climate change and forest disturbances are threatening the ability of forested mountain watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Here, we used 76 years of water yield, climate, and field plot vegetation measurements in six unmanaged, reference watersheds in the southern Appalachian Mountains of North Carolina, USA to determine whether water yield has changed over time, and to examine and attribute the causal mechanisms of change. We found that annual water yield increased in some watersheds from 1938 to the mid-1970s by as much as 55%, but this was followed by decreases up to 22% by 2013. Changes in forest evapotranspiration were consistent with, but opposite in direction to the changes in water yield, with decreases in evapotranspiration up to 31% by the mid-1970s followed by increases up to 29% until 2013. Vegetation survey data showed commensurate reductions in forest basal area until the mid-1970s and increases since that time accompanied by a shift in dominance from xerophytic oak and hickory species to several mesophytic species (i.e., mesophication) that use relatively more water. These changes in forest structure and species composition may have decreased water yield by as much as 18% in a given year since the mid-1970s after accounting for climate. Our results suggest that changes in climate and forest structure and species composition in unmanaged forests brought about by disturbance and natural community dynamics over time can result in large changes in water supply.


Subject(s)
Climate Change , Forests , Appalachian Region , North Carolina , Trees , Water
2.
Glob Chang Biol ; 21(12): 4627-41, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26195014

ABSTRACT

Climate change will affect tree species growth and distribution; however, under the same climatic conditions species may differ in their response according to site conditions. We evaluated the climate-driven patterns of growth for six dominant deciduous tree species in the southern Appalachians. We categorized species into two functional groups based on their stomatal regulation and xylem architecture: isohydric, diffuse porous and anisohydric, ring porous. We hypothesized that within the same climatic regime: (i) species-specific differences in growth will be conditional on topographically mediated soil moisture availability; (ii) in extreme drought years, functional groups will have markedly different growth responses; and (iii) multiple hydroclimate variables will have direct and indirect effects on growth for each functional group. We used standardized tree-ring chronologies to examine growth of diffuse-porous (Acer, Liriodendron, and Betula) and ring-porous (Quercus) species vs. on-site climatic data from 1935 to 2003. Quercus species growing on upslope sites had higher basal area increment (BAI) than Quercus species growing on mesic, cove sites; whereas, Acer and Liriodendron had lower BAI on upslope compared to cove sites. Diffuse-porous species were more sensitive to climate than ring porous, especially during extreme drought years. Across functional groups, radial growth was more sensitive to precipitation distribution, such as small storms and dry spell length (DSL), rather than the total amount of precipitation. Based on structural equation modeling, diffuse-porous species on upslope sites were the most sensitive to multiple hydroclimate variables (r(2)  = 0.46), while ring-porous species on upslope sites were the least sensitive (r(2)  = 0.32). Spring precipitation, vapor pressure deficit, and summer storms had direct effects on summer AET/P, and summer AET/P, growing season small storms and DSL partially explained growth. Decreasing numbers of small storms and extending the days between rainfall events will result in significant growth reduction, even in regions with relatively high total annual rainfall.


Subject(s)
Climate , Forests , Trees/growth & development , Climate Change , North Carolina , Seasons , Xylem/anatomy & histology
3.
Ecol Appl ; 21(6): 2049-67, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21939043

ABSTRACT

Forested watersheds, an important provider of ecosystems services related to water supply, can have their structure, function, and resulting streamflow substantially altered by land use and land cover. Using a retrospective analysis and synthesis of long-term climate and streamfiow data (75 years) from six watersheds differing in management histories we explored whether streamflow responded differently to variation in annual temperature and extreme precipitation than unmanaged watersheds. We show significant increases in temperature and the frequency of extreme wet and dry years since the 1980s. Response models explained almost all streamflow variability (adjusted R2 > 0.99). In all cases, changing land use altered streamflow. Observed watershed responses differed significantly in wet and dry extreme years in all but a stand managed as a coppice forest. Converting deciduous stands to pine altered the streamflow response to extreme annual precipitation the most; the apparent frequency of observed extreme wet years decreased on average by sevenfold. This increased soil water storage may reduce flood risk in wet years, but create conditions that could exacerbate drought. Forest management can potentially mitigate extreme annual precipitation associated with climate change; however, offsetting effects suggest the need for spatially explicit analyses of risk and vulnerability.


Subject(s)
Climate Change , Ecosystem , Forestry/methods , Trees/physiology , Appalachian Region , Computer Simulation , Environmental Monitoring , Models, Theoretical , Rain , Seasons , Time Factors , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...