Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 82: 102592, 2022 11.
Article in English | MEDLINE | ID: mdl-36095906

ABSTRACT

In silico tissue models (viz. numerical phantoms) provide a mechanism for evaluating quantitative models of magnetic resonance imaging. This includes the validation and sensitivity analysis of imaging biomarkers and tissue microstructure parameters. This study proposes a novel method to generate a realistic numerical phantom of myocardial microstructure. The proposed method extends previous studies by accounting for the variability of the cardiomyocyte shape, water exchange between the cardiomyocytes (intercalated discs), disorder class of myocardial microstructure, and four sheetlet orientations. In the first stage of the method, cardiomyocytes and sheetlets are generated by considering the shape variability and intercalated discs in cardiomyocyte-cardiomyocyte connections. Sheetlets are then aggregated and oriented in the directions of interest. The morphometric study demonstrates no significant difference (p>0.01) between the distribution of volume, length, and primary and secondary axes of the numerical and real (literature) cardiomyocyte data. Moreover, structural correlation analysis validates that the in-silico tissue is in the same class of disorderliness as the real tissue. Additionally, the absolute angle differences between the simulated helical angle (HA) and input HA (reference value) of the cardiomyocytes (4.3°±3.1°) demonstrate a good agreement with the absolute angle difference between the measured HA using experimental cardiac diffusion tensor imaging (cDTI) and histology (reference value) reported by (Holmes et al., 2000) (3.7°±6.4°) and (Scollan et al. 1998) (4.9°±14.6°). Furthermore, the angular distance between eigenvectors and sheetlet angles of the input and simulated cDTI is much smaller than those between measured angles using structural tensor imaging (as a gold standard) and experimental cDTI. Combined with the qualitative results, these results confirm that the proposed method can generate richer numerical phantoms for the myocardium than previous studies.


Subject(s)
Diffusion Tensor Imaging , Myocardium , Humans , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Imaging, Three-Dimensional/methods , Myocardium/pathology , Myocytes, Cardiac , Body Water
2.
IEEE Trans Image Process ; 31: 5613-5628, 2022.
Article in English | MEDLINE | ID: mdl-35976821

ABSTRACT

This paper presents a new approach for reconstruction of disconnected digital lines (DDLs) based on a constrained regularization model which ensures connectivity of the digital lines (DLs) in the discrete image plane. The first step in this approach is to determine the order of given pixels of the DDL. To determine connectivity of pixels, we use the usual 8-neighbor connectivity in discrete images. For any neighboring pixels of the DDL that are not connected, we determine a number of new pixel values that need to be reconstructed between these pixels. Next, the integer-valued x - and y -coordinates of the location of the pixels of the DDLs are segregated into two 1D signal vectors. Then the x - and y -coordinates of the missing pixels of the DDLs are estimated using a new constrained regularization. While the solution of this constrained minimization problem provides real values for the x - and y -coordinates of pixels positions, the imposed constraint ensures connectivity of the resulting DLs in the image plane after transforming the computed values from [Formula: see text] to [Formula: see text]. The proposed regularization approach forces connected lines with small curvature. The experimental results demonstrate that the proposed technique improves DL intersection detection, as well. Moreover, this technique has a high potential to be used as a fast approach in binary image inpainting particularly overcoming the shortcomings of conventional methods which cause destruction of thin objects and blurring in the recovered regions.

3.
Article in English | MEDLINE | ID: mdl-29994562

ABSTRACT

Estimation of missing digital information is mostly addressed by one or two-dimensional signal processing methods; however, this problem can emerge in multi-dimensional data including 3D images. Examples of 3D images dealing with missing edge information are often found using dental micro-CT, where the natural contours of dental enamel and dentine are partially dissolved or lost by caries. In this paper, we present a novel sequential approach to estimate the missing surface of an object. First, an initial correct contour is determined interactively or automatically, for the starting slice. This contour information defines the local search area and provides the overall estimation pattern for the edge candidates in the next slice. The search for edge candidates in the next slice is performed in the perpendicular direction to the obtained initial edge in order to find and label the corrupted edge candidates. Subsequently, the location information of both initial and nominated edge candidates are transformed and segregated into two independent signals (X-coordinates and Y-coordinates) and the problem is changed into error concealment. In the next step, the missing samples of these signals are estimated using a modified Tikhonov regularization model with two new terms. One term contributes in the denoising of the corrupted signal by defining an estimation model for a group of mildly destructed samples, and the other term contributes in the estimation of the missing samples with the highest similarity to the samples of the obtained signals from the previous slice. Finally, the reconstructed signals are transformed inversely to edge pixel representation. The estimated edges in each slice are considered as initial edge information for the next slice and this procedure is repeated slice by slice until the entire contour of the destructed surface is estimated. The visual results as well as quantitative results (using both contour-based and area-based metrics) for seven image datasets of tooth samples with considerable destruction of the dentin-enamel junction (DEJ) demonstrates that the proposed method can accurately interpolate the shape and the position of the missing surfaces in computed tomography images in both two and three dimensions (e.g. 14.87 ±3.87 µ m of mean distance (MD) error for the proposed method versus 7.33 ±0.27 µm of MD error between human experts and 1.25 ±~0 % error rate (ER) of the proposed method versus 0.64 ±~0 % of ER between human experts (~1% difference)).

4.
Dentomaxillofac Radiol ; 45(3): 20150302, 2016.
Article in English | MEDLINE | ID: mdl-26764583

ABSTRACT

OBJECTIVES: The aim of the current study was to evaluate the application of two advanced noise-reduction algorithms for dental micro-CT images and to implement a comparative analysis of the performance of new and current denoising algorithms. METHODS: Denoising was performed using gaussian and median filters as the current filtering approaches and the block-matching and three-dimensional (BM3D) method and total variation method as the proposed new filtering techniques. The performance of the denoising methods was evaluated quantitatively using contrast-to-noise ratio (CNR), edge preserving index (EPI) and blurring indexes, as well as qualitatively using the double-stimulus continuous quality scale procedure. RESULTS: The BM3D method had the best performance with regard to preservation of fine textural features (CNREdge), non-blurring of the whole image (blurring index), the clinical visual score in images with very fine features and the overall visual score for all types of images. On the other hand, the total variation method provided the best results with regard to smoothing of images in texture-free areas (CNRTex-free) and in preserving the edges and borders of image features (EPI). CONCLUSIONS: The BM3D method is the most reliable technique for denoising dental micro-CT images with very fine textural details, such as shallow enamel lesions, in which the preservation of the texture and fine features is of the greatest importance. On the other hand, the total variation method is the technique of choice for denoising images without very fine textural details in which the clinician or researcher is interested mainly in anatomical features and structural measurements.


Subject(s)
Artifacts , Image Processing, Computer-Assisted/methods , Radiography, Dental/methods , X-Ray Microtomography/methods , Algorithms , Dental Caries/diagnostic imaging , Dental Enamel/diagnostic imaging , Dentin/diagnostic imaging , Filtration/instrumentation , Humans , Imaging, Three-Dimensional/methods , Microradiography/methods , Radiographic Image Enhancement/methods , Tomography, X-Ray/methods , Tooth Fractures/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...