Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Basic Med Sci ; 26(6): 708-716, 2023.
Article in English | MEDLINE | ID: mdl-37275753

ABSTRACT

Objectives: The main objective of the current assay was to evaluate the antibacterial and regenerative effects of hydrogel nanocomposite containing pure natural zeolite (clinoptilolite) integrated with alginate (Alg) as wound healing/dressing biomaterials. Materials and Methods: The zeolites were size excluded, characterized by SEM, DLS, XRD, FTIR, and XRF, and then integrated into Alg hydrogel followed by calcium chloride crosslinking. The Alg and alginate zeolite (Alg/Zeo) hydrogel was characterized by swelling and weight loss tests, also the antibacterial, hemocompatibility, and cell viability tests were performed. In animal studies, the burn wound was induced on the back of rats and treated with the following groups: control, Alg hydrogel, and Alg/Zeo hydrogel. Results: The results showed that the hydrodynamic diameter of zeolites was 367 ± 0.2 nm. Zeolites did not show any significant antibacterial effect, however, the hydrogel nanocomposite containing zeolite had proper swelling as well as hemocompatibility and no cytotoxicity was observed. Following the creation of a third-degree burn wound on the back of rats, the results indicated that the Alg hydrogel and Alg/Zeo nanocomposite accelerated the wound healing process compared with the control group. Re-epithelialization, granulation tissue thickness, collagenization, inflammatory cell recruitment, and angiogenesis level were not significantly different between Alg and Alg/Zeo nanocomposite. Conclusion: These findings revealed that although the incorporation of zeolites did not induce a significant beneficial effect in comparison with Alg hydrogel, using zeolite capacity in hydrogel for loading the antibiotics or other effective compounds can be considered a promising wound dressing.

2.
J Cancer Res Ther ; 19(2): 327-334, 2023.
Article in English | MEDLINE | ID: mdl-37313910

ABSTRACT

Objective: Propolis is a viscous resinous honeybee-produced substance with numerous medicinal functions; its composition and texture varies according to the geographic location. It is considered to be a promising natural source for the management and prevention of various pathological conditions. Although several studies have exhibited the anti-cancer activity of different types of propolis, the tumor-suppressing potential of Kermanian propolis against leukemia cell lines has remained poorly understood. Therefore, the current experiment was aimed to reveal the anti-tumor activity of this bioactive compound both as monotherapy and combined therapy with cytarabine against an acute myeloid leukemia (AML) cell line, NB4. Materials and Methods: Following the treatment of NB4 cells with either Kermanian propolis (5, 10, 20, 40, 80, 160, and 320 µg/mL), cytarabine (0.1, 0.25, 0.5, 0.75, 1, and 2 mM), or their combination (40 and 80 µg/mL of Kermanian propolis along with 0.1, 0.25, and 0.5 mM of cytarabine), colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was employed to measure the viability (%) of the cells. Next, to examine the apoptotic rate and the pattern of corresponding gene expression (Bcl-2, Bax, p53, and p21), Annexin-V/PI staining by flow cytometry and quantitative Real-Time polymerase chain reaction assays were performed, respectively. Results: We perceived significant apoptosis induction in a dose-dependent manner following the treatment with Kermanian propolis, cytarabine, and also their combination in the NB4 cell line. In addition, the combined treatment was associated with lower expression of the anti-apoptotic gene (Bcl-2) and higher expression of the pro-apoptotic genes (p53, Bax, and p21) in comparison to mono treatments. Conclusion: The synergistic anti-tumor activity induced by the combination of Kermanian propolis and cytarabine presents a novel and encouraging option for AML treatment.


Subject(s)
Leukemia, Myeloid, Acute , Propolis , Bees , Humans , Animals , Up-Regulation , Propolis/pharmacology , bcl-2-Associated X Protein/genetics , Tumor Suppressor Protein p53/genetics , Leukemia, Myeloid, Acute/drug therapy , Apoptosis , Cell Line , Cytarabine
3.
Int J Biol Macromol ; 239: 124099, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36948335

ABSTRACT

Wound dressing is applied to promote the healing process, wound protection, and additionally regeneration of injured skin. In this study, a bilayer scaffold composed of a hydrogel and nanofibers was fabricated to improve the regeneration of injured skin. To this end, polycaprolactone/gelatin (PCL/Gel) nanofibers were electrospun directly on the prepared collagen/alginate (Col/Alg) hydrogel. The bilayer scaffold was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), mechanical properties, and swelling/degradation time. Cytotoxicity assays were evaluated using MTT assay. Then, the nanofiber and bilayer scaffolds were seeded with Adipose-derived stem cells (ADSCs). ADSCs were isolated from rat adipose tissue and analyzed using flow cytometry, in advance. Full-thickness wounds on the backs of rats were dressed with ADSCs-seeded bilayer scaffolds and nanofibers. Histopathological evaluations were performed after 14 and 21 days using H&E (hematoxylin and eosin) staining. The results indicated that re-epithelialization, angiogenesis, and collagen remodeling were enhanced in ADSCs-seeded bilayer scaffolds and nanofibers in comparison with the control group. In conclusion, the best re-epithelialization, collagen organization, neovascularization, and low presence of inflammation in the wound area were observed in the ADSCs-seeded bilayer scaffolds.


Subject(s)
Mesenchymal Stem Cells , Nanofibers , Rats , Animals , Gelatin , Tissue Scaffolds , Hydrogels , Alginates , Collagen , Bandages
4.
Sci Rep ; 12(1): 12657, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879400

ABSTRACT

One of the heterogeneous hematologic malignancies of the lymphocyte precursors is ALL. ALL has two incidence peaks that were determined in 2-5 years children and 60 years old adults. Cardiotoxicity of chemotherapeutic drugs is one of important side effects which may occur during or after chemotherapy period. The aim of this study was to evaluate the effect of ZME, Dox, and combinations on Nalm-6 cells. In this vein, the cell viability was assessed by Trypan blue and MTT assay. Evaluation of apoptosis was also analyzed by Annexin-V/PI staining. Moreover, the expression of Bax, Bcl-2, Bcl-xl, hTERT, c-Myc, P53, and P21 genes was detected by Real-Time PCR. Molecular docking as an in-silico method was performed for Bcl-2 and Bcl-xl proteins as well. Our achievements indicated that ZME had dose-dependent effect on Nalm-6 cells and ZME synergistically potentiated Dox effect. The expression of Bax, P53 and P21 genes increased although the expression of Bcl-2 genes decreased when cells treated with ZME/ Dox combination. Molecular docking showed the interactions of carvacrol and thymol in the active cavities of BCL2 and BCL-xl. Regarding to present study, ZME could be utilized as a combinatorial and potential drug for leukemic patients, which is under the treatment by Dox due to reducing the chemotherapy drug doses.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Tumor Suppressor Protein p53 , Apoptosis , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Humans , Molecular Docking Simulation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/metabolism
5.
Chem Biol Interact ; 361: 109957, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35472413

ABSTRACT

INTRODUCTION: Leishmaniasis denotes a significant health challenge worldwide with no ultimate treatment. The current study investigated the biological effects of gamma-terpinene (GT) on Leishmania major in putative antileishmanial action, cytotoxicity, apoptosis induction, gene expression alteration, antioxidant activity, hemolysis, and ROS generation. METHODS: GT and meglumine antimoniate (MA) were probed alone and in combination (GT/MA) for their anti-leishmanial potentials using the MTT biochemical colorimetric assay and a model macrophage cell. In addition, their immunomodulatory properties were assessed by analyzing their effect on the transcription of cytokines related to Th1 and Th2 responses. GT and MA, alone and in combination, were also assessed for their potential to alter metacaspase gene expression in L. major promastigotes by real-time RT-PCR. The hemolytic potential of GT and MA-treated promastigotes were also measured by routine UV absorbance reading. Electrophoresis on agarose gel was employed to analyze genomic DNA fragmentation. RESULTS: GT demonstrated notable dose-dependent antileishmanial effects towards promastigotes and amastigotes of L. major. The IC50 values for GT against L. major promastigotes and amastigotes were 46.76 mM and 25.89 mM, respectively. GT was considerably safer towards murine macrophages than L. major amastigotes with an SI value of 3.17. Transcriptional expression of iNOS, JAK-1, Interleukin (IL-10), and TGF-ß was meaningfully decreased, while the levels of metacaspase mRNA were increased. Results also confirmed GT antioxidant activities. Also, increased levels of intracellular ROS were observed upon treatment of promastigotes with GT. The gel electrophoresis result indicated slight DNA fragmentation in the treated promastigotes by both drugs. A weak hemolytic effect was also observed for GT. CONCLUSION: The results demonstrated that GT showed potent activity against L. major stages. It seems that its mechanism of action involves representing an immunomodulatory role towards upregulation of iNOS and JAK-1, while downregulation of IL-10 and TGF- ß. Moreover, GT has an antioxidative potential and exerts its action through activating macrophages to kill the organism. Further in vivo and clinical studies are essential to explore its effect in future programs.


Subject(s)
Antiprotozoal Agents , Leishmania major , Animals , Antioxidants/pharmacology , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Cyclohexane Monoterpenes , Interleukin-10 , Meglumine Antimoniate/pharmacology , Mice , Mice, Inbred BALB C , Reactive Oxygen Species
6.
Cytotechnology ; 72(4): 551-567, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32601794

ABSTRACT

As a widely used cell culture supplement, fetal bovine serum (FBS) harbor high content of growth, proliferation, and adhesion factors. However, high cost, bio-safety, possible xenogeneic agent transmission, finite accessible, and ethical controversy are major obstacles that discourage the use of this additive. Accordingly, novel alternatives have been proposed with various pros and cons. Still, caution should be taken in choosing suitable substitute given that the alteration in the main aspects of cultured cells can be biased the consequences of clinical applications. Herein, the authors evaluated the impact of cord blood serum harvesting by hydroxyethyl starch (CBS-HES), as an enriched source of growth factors, on the basic mesenchymal stem cells (MSCs) characteristics. In the present experiment, umbilical cord-derived MSCs were isolated and continuously nourished with Dulbecco's Modified Eagle Medium containing either 10, 15, and 20% CBS-HES or FBSs to compare their morphology, immunophenotype, growth and proliferation rate, death rate, cell cycle, and gene expression profiles. Although all enriched media supported the expansion of MSCs with comparable morphology, cell surface markers, death rate, c-MYC and p16 expression, and growth rate, CBS-HES treated cells significantly (P < 0.05) expressed more hTERT gene in a concentration-dependent manner. Yet no significant shift was observed in the cell cycle of cultured cells using the same concentrations of additives, a finding which further confirmed by Ki-67 immunostaining. CBS-HES as an available and affordable additive, seems to be an optimal, relatively safe, and promising FBS alternative for cultivation, propagation, and subsequent clinical applications of MSCs.

7.
J Med Microbiol ; 67(9): 1334-1339, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29969089

ABSTRACT

PURPOSE: Entero-aggregative Escherichia coli (EAEC) is one of the main causes of diarrhoea worldwide. Several virulence factors have been identified in EAEC. This study was conducted to investigate the distribution of virulence factor genes in EAEC strains isolated in Iran from children with diarrhoea, as well as the genetic similarity of these isolates. METHODOLOGY: A total of 37 EAEC isolates were tested for the presence of 11 virulence genes by PCR, and the genetic relatedness of these strains was further determined by multilocus variable-number tandem-repeat analysis (MLVA). RESULTS: All EAEC isolates were typical EAEC. pic, set1A and set1B were the most prevalent genes, detected in 54.1 % of the isolates, followed by sat (43.2 %), astA (32.4 %), pet (24.3 %), agg4A (24.3 %), sepA (18.9 %), agg3A (13.5 %), sigA (8.1 %), aggA (8.1 %) and aafA (5.4 %). Using MLVA, the 37 isolates were divided into 32 types and classified into five clonal complexes. CONCLUSION: This study showed that EAEC is a heterogeneous group of E. coli possessing a broad range of virulence factors. There was no notable association between MLVA patterns and virulence profiles.


Subject(s)
Diarrhea/microbiology , Escherichia coli Infections/microbiology , Escherichia coli/isolation & purification , Virulence Factors/genetics , Child , Child, Preschool , Escherichia coli/classification , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Female , Humans , Infant , Iran , Male , Minisatellite Repeats , Phylogeny , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...