Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-26307726

ABSTRACT

Electron capture dissociation (ECD) tandem mass spectrometry (MS/MS) is a powerful analytical tool for peptide and protein structure analysis. The product ion abundance (PIA) distribution in ECD MS/MS is known to vary as a function of electron irradiation period. This variation complicates the development of a method of peptide identification by correlation of ECD MS/MS data with experimental and theoretical mass spectra. Here, we first develop a kinetic model to describe primary electron capture by peptide dications leading to product ion formation and secondary electron capture resulting in product ion neutralization. We apply the developed kinetic model to calculate product ion formation rate constants and electron capture rate constants of product ions from ECD mass spectra acquired using various electron irradiation periods. Contrary to ECD PIA distributions, the product ion formation rate constants are shown to be independent of electron irradiation period and, thus, may be employed to characterize ECD product ion formation more universally. The electron capture rate constants of product ions in ECD Fourier transform ion cyclotron resonance MS were found to correlate (with a correlation factor, R(2), of ca 0.9) with ion mobility cross sections of product ions in electron transfer dissociation. Finally, we demonstrate that the electron irradiation period influences the ratio of radical and even-electron c and z product ions.


Subject(s)
Models, Chemical , Peptide Mapping/methods , Peptides/analysis , Peptides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Spectroscopy, Fourier Transform Infrared/methods , Algorithms , Computer Simulation , Electron Transport , Electrons
2.
J Am Soc Mass Spectrom ; 26(11): 1875-84, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26111519

ABSTRACT

Ticks are vectors for disease transmission because they are indiscriminant in their feeding on multiple vertebrate hosts, transmitting pathogens between their hosts. Identifying the hosts on which ticks have fed is important for disease prevention and intervention. We have previously shown that hemoglobin (Hb) remnants from a host on which a tick fed can be used to reveal the host's identity. For the present research, blood was collected from 33 bird species that are common in the U.S. as hosts for ticks but that have unknown Hb sequences. A top-down-assisted bottom-up mass spectrometry approach with a customized searching database, based on variability in known bird hemoglobin sequences, has been devised to facilitate fast and complete sequencing of hemoglobin from birds with unknown sequences. These hemoglobin sequences will be added to a hemoglobin database and used for tick host identification. The general approach has the potential to sequence any set of homologous proteins completely in a rapid manner. Graphical Abstract ᅟ.


Subject(s)
Avian Proteins , Databases, Protein , Hemoglobins , Sequence Analysis, Protein/methods , Software , Amino Acid Sequence , Animals , Avian Proteins/analysis , Avian Proteins/chemistry , Avian Proteins/classification , Birds , Hemoglobins/analysis , Hemoglobins/chemistry , Hemoglobins/classification , Molecular Sequence Data , Peptide Fragments/analysis , Peptide Fragments/chemistry , Tandem Mass Spectrometry
3.
Anal Chem ; 86(19): 9945-53, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25207962

ABSTRACT

Despite the recent advances in structural analysis of monoclonal antibodies with bottom-up, middle-down, and top-down mass spectrometry (MS), further improvements in analysis accuracy, depth, and speed are needed. The remaining challenges include quantitatively accurate assignment of post-translational modifications, reduction of artifacts introduced during sample preparation, increased sequence coverage per liquid chromatography (LC) MS experiment, and ability to extend the detailed characterization to simple antibody cocktails and more complex antibody mixtures. Here, we evaluate the recently introduced extended bottom-up proteomics (eBUP) approach based on proteolysis with secreted aspartic protease 9, Sap9, for analysis of monoclonal antibodies. Key findings of the Sap9-based proteomics analysis of a single antibody include: (i) extensive antibody sequence coverage with up to 100% for the light chain and up to 99-100% for the heavy chain in a single LC-MS run; (ii) connectivity of complementarity-determining regions (CDRs) via Sap9-produced large proteolytic peptides (3.4 kDa on average) containing up to two CDRs per peptide; (iii) reduced artifact introduction (e. g., deamidation) during proteolysis with Sap9 compared to conventional bottom-up proteomics workflows. The analysis of a mixture of six antibodies via Sap9-based eBUP produced comparable results. Due to the reasons specified above, Sap9-produced proteolytic peptides improve the identification confidence of antibodies from the mixtures compared to conventional bottom-up proteomics dealing with shorter proteolytic peptides.


Subject(s)
Antibodies, Monoclonal/chemistry , Aspartic Acid Endopeptidases/chemistry , Fungal Proteins/chemistry , Immunoglobulin G/chemistry , Peptides/isolation & purification , Proteomics/methods , Aspartic Acid Endopeptidases/isolation & purification , Candida albicans/chemistry , Candida albicans/enzymology , Chromatography, Liquid , Complementarity Determining Regions , Fungal Proteins/isolation & purification , Humans , Mass Spectrometry , Proteolysis
4.
J Proteomics ; 110: 20-31, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25123351

ABSTRACT

We investigate the benefits and experimental feasibility of approaches enabling the shift from short (1.7 kDa on average) peptides in bottom-up proteomics to about twice longer (~3.2 kDa on average) peptides in the so-called extended bottom-up proteomics. Candida albicans secreted aspartic protease Sap9 has been selected for evaluation as an extended bottom-up proteomic-grade enzyme due to its suggested dibasic cleavage specificity and ease of production. We report the extensive characterization of Sap9 specificity and selectivity revealing that protein cleavage by Sap9 most often occurs in the vicinity of proximal basic amino acids, and in select cases also at basic and hydrophobic residues. Sap9 is found to cleave a large variety of proteins in a relatively short, ~1 h, period of time and it is efficient in a broad pH range, including slightly acidic, e. g., pH5.5, conditions. Importantly, the resulting peptide mixtures contain representative peptides primarily in the target 3-7 kDa range. The utility and advantages of this enzyme in routine analysis of protein mixtures are demonstrated and the limitations are discussed. Overall, Sap9 has a potential to become an enzyme of choice in an extended bottom-up proteomics, which is technically ready to complement the traditional bottom-up proteomics for improved targeted protein structural analysis and expanded proteome coverage. BIOLOGICAL SIGNIFICANCE: Advances in biological applications of mass spectrometry-based bottom-up proteomics are oftentimes limited by the extreme complexity of biological samples, e.g., proteomes or protein complexes. One of the reasons for it is in the complexity of the mixtures of enzymatically (most often using trypsin) produced short (<3 kDa) peptides, which may exceed the analytical capabilities of liquid chromatography and mass spectrometry. Information on localization of protein modifications may also be affected by the small size of typically produced peptides. On the other hand, advances in high-resolution mass spectrometry and liquid chromatography have created an intriguing opportunity of improving proteome analysis by gradually increasing the size of enzymatically-derived peptides in MS-based bottom-up proteomics. Bioinformatics has already confirmed the envisioned advantages of such approach. The remaining bottle-neck is an enzyme that could produce longer peptides. Here, we report on the characterization of a possible candidate enzyme, Sap9, which may be considered for producing longer, e.g., 3-7 kDa, peptides and lead to a development of extended bottom-up proteomics.


Subject(s)
Aspartic Acid Endopeptidases/chemistry , Fungal Proteins/chemistry , Peptide Mapping/methods , Sequence Analysis, Protein/methods , Amino Acid Sequence , Binding Sites , Enzyme Activation , Enzyme Stability , Molecular Sequence Data , Protein Binding , Structure-Activity Relationship , Substrate Specificity
5.
J Proteome Res ; 13(4): 1911-20, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24571493

ABSTRACT

Data-dependent tandem mass spectrometry (MS/MS) is one of the main techniques for protein identification in shotgun proteomics. In a typical LC-MS/MS workflow, peptide product ion mass spectra (MS/MS spectra) are compared with those derived theoretically from a protein sequence database. Scoring of these matches results in peptide identifications. A set of peptide identifications is characterized by false discovery rate (FDR), which determines the fraction of false identifications in the set. The total number of peptides targeted for fragmentation is in the range of 10,000 to 20,000 for a several-hour LC-MS/MS run. Typically, <50% of these MS/MS spectra result in peptide-spectrum matches (PSMs). A small fraction of PSMs pass the preset FDR level (commonly 1%) giving a list of identified proteins, yet a large number of correct PSMs corresponding to the peptides originally present in the sample are left behind in the "grey area" below the identity threshold. Following the numerous efforts to recover these correct PSMs, here we investigate the utility of a scoring scheme based on the multiple PSM descriptors available from the experimental data. These descriptors include retention time, deviation between experimental and theoretical mass, number of missed cleavages upon in-solution protein digestion, precursor ion fraction (PIF), PSM count per sequence, potential modifications, median fragment mass error, (13)C isotope mass difference, charge states, and number of PSMs per protein. The proposed scheme utilizes a set of metrics obtained for the corresponding distributions of each of the descriptors. We found that the proposed PSM scoring algorithm differentiates equally or more efficiently between correct and incorrect identifications compared with existing postsearch validation approaches.


Subject(s)
Peptide Mapping/methods , Peptides/classification , Proteomics/methods , Peptides/analysis , Peptides/chemistry , Reproducibility of Results , Tandem Mass Spectrometry/methods
6.
J Proteome Res ; 12(12): 5558-69, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24171472

ABSTRACT

Mass spectrometry (MS)-based bottom-up proteomics (BUP) is currently the method of choice for large-scale identification and characterization of proteins present in complex samples, such as cell lysates, body fluids, or tissues. Technically, BUP relies on MS analysis of complex mixtures of small, <3 kDa, peptides resulting from whole proteome digestion. Because of the extremely high sample complexity, further developments of detection methods and sample preparation techniques are necessary. In recent years, a number of alternative approaches such as middle-down proteomics (MDP, addressing up to 15 kDa peptides) and top-down proteomics (TDP, addressing proteins exceeding 15 kDa) have been gaining particular interest. Here we report on the bioinformatics study of both common and less frequently employed digestion procedures for complex protein mixtures specifically targeting the MDP approach. The aim of this study was to maximize the yield of protein structure information from MS data by optimizing peptide size distribution and sequence specificity. We classified peptides into four categories based on molecular weight: 0.6-3 (classical BUP), 3-7 (extended BUP), 7-15 kDa (MDP), and >15 kDa (TDP). Because of instrumentation-related considerations, we first advocate for the extended BUP approach as the potential near-future improvement of BUP. Therefore, we chose to optimize the number of unique peptides in the 3-7 kDa range while maximizing the number of represented proteins. The present study considers human, yeast, and bacterial proteomes. Results of the study can be further used for designing extended BUP or MDP experimental workflows.


Subject(s)
Escherichia coli/chemistry , Peptides/analysis , Proteome/analysis , Saccharomyces cerevisiae/chemistry , Chromatography, Liquid , Databases, Protein , Humans , Molecular Weight , Peptides/chemistry , Peptides/classification , Proteolysis , Proteome/chemistry , Proteome/classification , Proteomics , Tandem Mass Spectrometry
7.
Chimia (Aarau) ; 67(4): 244-9, 2013.
Article in English | MEDLINE | ID: mdl-23967698

ABSTRACT

Mass spectrometry (MS) is currently the most sensitive and selective analytical technique for routine peptide and protein structure analysis. Top-down proteomics is based on tandem mass spectrometry (MS/ MS) of intact proteins, where multiply charged precursor ions are fragmented in the gas phase, typically by electron transfer or electron capture dissociation, to yield sequence-specific fragment ions. This approach is primarily used for the study of protein isoforms, including localization of post-translational modifications and identification of splice variants. Bottom-up proteomics is utilized for routine high-throughput protein identification and quantitation from complex biological samples. The proteins are first enzymatically digested into small (usually less than ca. 3 kDa) peptides, these are identified by MS or MS/MS, usually employing collisional activation techniques. To overcome the limitations of these approaches while combining their benefits, middle-down proteomics has recently emerged. Here, the proteins are digested into long (3-15 kDa) peptides via restricted proteolysis followed by the MS/MS analysis of the obtained digest. With advancements of high-resolution MS and allied techniques, routine implementation of the middle-down approach has been made possible. Herein, we present the liquid chromatography (LC)-MS/MS-based experimental design of our middle-down proteomic workflow coupled with post-LC supercharging.


Subject(s)
Aspartic Acid Endopeptidases/analysis , Bacterial Proteins/metabolism , Candida albicans/enzymology , Chromatography, Liquid/methods , Fungal Proteins/analysis , Peptide Fragments/analysis , Proteomics , Tandem Mass Spectrometry/methods
8.
Chem Soc Rev ; 42(12): 5014-30, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23450212

ABSTRACT

This tutorial review describes the principles and practices of electron capture and transfer dissociation (ECD/ETD or ExD) mass spectrometry (MS) employed for peptide and protein structure analysis. ExD MS relies on interactions between gas phase peptide or protein ions carrying multiple positive charges with either free low-energy (~1 eV) electrons (ECD), or with reagent radical anions possessing an electron available for transfer (ETD). As a result of recent implementation on sensitive, high resolution, high mass accuracy, and liquid chromatography timescale-compatible mass spectrometers, ExD, more specifically, ETD MS has received particular interest in life science research. In addition to describing the fundamental aspects of ExD radical ion chemistry, this tutorial provides practical guidelines for peptide de novo sequencing with ExD MS, as well as reviews some of the current capabilities and limitations of these techniques. The merits of ExD MS are discussed primarily within the context of life science research.


Subject(s)
Peptides/analysis , Proteins/analysis , Amino Acid Sequence , Chromatography, High Pressure Liquid , Electrons , Phosphopeptides/analysis , Proteomics , Tandem Mass Spectrometry
9.
J Med Entomol ; 50(6): 1282-90, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24843933

ABSTRACT

Ixodes scapularis Say, 1821 larvae were fed on mice and allowed to molt under laboratory conditions. A liquid chromatography-tandem mass spectrometry-based proteomic study was conducted to identify the type of mammalian proteins present in the derived nymphal ticks at different time intervals after molting. Albumin was present for 85 d; transferrin was present for 29 d; and, more importantly, hemoglobin remained detectable for up to 309 d postmolting. Peptides of actin, keratin, and tubulin are highly similar between mouse and tick, and therefore, unambiguous assignment of these proteins to different species was not possible. Establishing a time line for the persistence of hemoglobin, one of the most abundant blood proteins, at detectable levels in ticks after the bloodmeal and molting advances our efforts to use this protein to identify the host species.


Subject(s)
Blood Proteins/metabolism , Ixodes/physiology , Mice/parasitology , Amino Acid Sequence , Animals , Chromatography, Liquid , Female , Ixodes/growth & development , Larva/growth & development , Larva/physiology , Mice/metabolism , Nymph/growth & development , Nymph/physiology , Tandem Mass Spectrometry , Time Factors
10.
Biol Chem ; 393(3): 195-201, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22718635

ABSTRACT

We report the successful de novo sequencing of hemoglobin using a mass spectrometry-based approach combined with automatic data processing and manual validation for nine North American species with currently unsequenced genomes. The complete α and ß chain of all nine mammalian hemoglobin samples used in this study were successfully sequenced. These sequences will be appended to the existing database containing all known hemoglobins to be used for identification of the mammalian host species that provided the last blood meal for the tick vector of Lyme disease, Ixodes scapularis.


Subject(s)
Hemoglobins/chemistry , Sequence Analysis, Protein/methods , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Animals , Chromatography, Liquid/methods , Databases, Protein , Hemoglobins/genetics , Molecular Sequence Data , Phylogeny
11.
J Forensic Sci ; 53(6): 1437-42, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18717751

ABSTRACT

This paper describes the sequence of analyses used to determine the nature of a stain located on the floor of room in the former Athens Mental Health and Retardation Hospital in Athens, OH. The location of the stain was reported to be the position in which a decomposing body was discovered on January 11, 1979. The current stain is found to contain strong evidence for both natural decomposition products and deliberate adulteration. Microscopic analyses, solubility tests, FTIR, ICP-OES, pyrolysis-MS, and derivatization GC-MS were consistent in determining the removable parts of the stain to be composed mostly of calcium and sodium salts of free fatty acids, such as palmitic acid, consistent with previous descriptions of adipocere. The free fatty acids could have been formed via known bacterial degradation pathways or via saponification through the basic environment caused through contact with the concrete. To our knowledge, adipocere formation on an exposed indoor environment has not been described before. The stain and concrete also show signs of being chemically modified with an acidic reagent, such as Blu-Lite--a phosphoric acid-based cleaner that was a commonly used cleaner in the building from the time of discovery to the present day. The chemical etching appears to have been restricted to an area resembling the shape of a human body, which is consistent with deliberate adulteration of the appearance of the stain.


Subject(s)
Construction Materials , Fatty Acids, Nonesterified/analysis , Floors and Floorcoverings , Postmortem Changes , Calcium/analysis , Detergents , Female , Forensic Pathology , Gas Chromatography-Mass Spectrometry , Humans , Mass Spectrometry , Microscopy , Middle Aged , Sodium/analysis , Spectrum Analysis
12.
Rapid Commun Mass Spectrom ; 22(15): 2342-8, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18613279

ABSTRACT

Fragmentation of the pentapeptide leucine enkephalin (YGGFL) is accomplished via higher-order resonances combined with simultaneous analysis of low-mass product ions. Two methods of achieving excitation are explored: (1) 0.5 ms resonant excitation at the omega and at Omega-omega secular frequencies of ion motion (where Omega is the radio-frequency (rf) drive frequency) in a manner similar to both pulsed q collision-induced dissociation (PQD) and high amplitude short time excitation (HASTE), and (2) 0.5 ms pulse of the omega or at Omega-omega excitation frequencies when the secular frequency of the ions is quickly swept across resonance conditions (pulsed q dynamic CID, PqDCID). In both methods of excitation, the rf amplitude on the ring electrode is rapidly decreased after excitation, therefore enabling analysis of low-mass product ions. Maximum fragmentation efficiencies of approximately 20% can be obtained with pulsed CID with both regular and high-order frequency excitation, while pulsed DCID offers maximum efficiencies of approximately 12%. All the excitation methods studied offer increased internal energy depositions when compared to conventional CID, as measured by the a4/b4 product ion ratios of leucine enkephalin. These ratios were as high as 13:1 for pulsed CID and 8:1 for PqDCID. Successful mass analysis of the low-mass ions is observed with both pulsed CID and PqDCID. The combined benefit of high internal energy deposition and wider dynamic mass range offers the possibility of increased sequence coverage and the identification of unique internal fragments or high-energy product ions which may provide complementary information to biological applications of conventional CID. This is the first report on deliberate fragmentation of precursor ions at a higher-order component of the ion secular frequency combined with a successful mass analysis of the low-mass ions through pulsed CID and PqDCID.

13.
J Am Soc Mass Spectrom ; 18(11): 2017-25, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17904860

ABSTRACT

Dynamic CID of selected precursor ions is achieved by the application of a two-frequency excitation waveform to the end-cap electrodes during the mass instability scan of a quadrupole ion trap (QIT) mass spectrometer. This new method permits a shorter scanning time when compared with conventional on-resonance CID. When the excitation waveform consists of two closely-spaced frequencies, the relative phase-relationship of the two frequencies plays a critical role in the fragmentation dynamics. However, at wider frequency spacings (>10 kHz), these phase effects are diminished, while maintaining the efficacy of closely-spaced excitation frequencies. The fragmentation efficiencies and energetics of n-butylbenzene and tetra-alanine are studied under different experimental conditions and the results are compared at various scan rate parameters between 0.1 and 1.0 ms/Th. Although faster scan rates reduce the analysis time, the maximum observed fragmentation efficiencies rarely exceed 30%, compared with values in excess of 50% achieved at slower scan rates. The internal energies calculated from the simulations of n-butylbenzene at fast scan rates are approximately 4 eV for most experimental conditions, while at slow scan rates, internal energies above 5.5 eV are observed for a wide range of conditions. Extensive ITSIM simulations support the observation that slowing the scan rate has a similar effect on fragmentation as widening the frequency spacing between the two excitation frequencies. Both approaches generally enhance CID efficiencies and make fragmentation less dependent upon the relative phase angle between the excitation waveform and the ion motion.

14.
J Am Soc Mass Spectrom ; 18(4): 749-61, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17275322

ABSTRACT

This study describes the application of a two-frequency excitation waveform to the end-cap electrodes of a quadrupole ion trap (QIT) during the mass acquisition period to deliberately fragment selected precursor ions. This approach obviates the need for a discrete excitation period and guarantees on-resonant excitation conditions without any requirement for resonant tuning; it is therefore faster than the conventional approach to collision-induced dissociation (CID) in QITs. The molecular ion of n-butylbenzene is used as thermometer molecule to determine the energetics of the new excitation procedure. The excitation waveform, consisting of two closely spaced sinusoidal frequencies, has an interference pattern that displays nodes and crests in the time domain. The energetics (determined by the product ion ratios of 91/92 Th) and CID efficiencies are highly dependent on the excitation amplitude, the relative position of the excitation frequencies in the Mathieu stability diagram, and whether the ions come into resonance during a node or crest of the excitation waveform. Under highly energetic conditions, ratios of 91/92 as large as 15 can be obtained at concomitant CID efficiencies of 10%, indicating internal energies in excess of 10 eV at the time of fragmentation. These extremely high internal energies far exceed the energetics achievable using conventional on-resonance excitation in QITs, indicating that the collisional heating rate is very fast in the new approach. Under less energetic conditions CID efficiencies as high as 70% are possible, which compares favorably with results obtained by conventional on-resonance excitation. Correlation analyses are used to determine the conditions that simultaneously optimize energetic and efficient fragmentation conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...