Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36754849

ABSTRACT

Mg-S batteries are a promising next-generation system for beyond conventional Li-ion chemistry. The Mg-S architecture pairs a Mg metal anode with an inexpensive, high-capacity S8 cathode. However, S8-based cathodes exhibit the "polysulfide shuttle" effect, wherein soluble partially reduced Sx2- species generated at the cathode diffuse to and react with the anode. While dissolved polysulfides may undergo reactions to form Li+-permeable layers in Li-S systems, the interfaces on Mg anodes are passivating. In this work, we probe the reactivity of various Mg polysulfide solutions at the Mg anode interface. Mg polysulfide solutions are prepared without any chelating agents to closely mimic conditions in a Mg-S cell. The polysulfides are synthesized by reacting Mg metal and S8 in electrolyte, and the speciation is controlled by varying the Mg:S precursor ratio. S-poor precursor ratios produce magnesium polysulfide solutions with a higher proportion of short-chain polysulfides that react at the Mg anode faster than the longer-chain analogues. Anode passivation can be slowed by shifting the polysulfide equilibria toward longer-chain polysulfides through addition of S8.

2.
J Am Chem Soc ; 144(23): 10119-10132, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35653701

ABSTRACT

Secondary Li-ion batteries have enabled a world of portable electronics and electrification of personal and commercial transportation. However, the charge storage capacity of conventional intercalation cathodes is reaching the theoretical limit set by the stoichiometry of Li in the fully lithiated structure. Increasing the Li:transition metal ratio and consequently involving structural anions in the charge compensation, a mechanism termed anion redox, is a viable method to improve storage capacities. Although anion redox has recently become the front-runner as a next-generation storage mechanism, the concept has been around for quite some time. In this perspective, we explore the contribution of anions in charge compensation mechanisms ranging from intercalation to conversion and the hybrid mechanisms between. We focus our attention on the redox of S because the voltage required to reach S redox lies within the electrolyte stability window, which removes the convoluting factors caused by the side reactions that plague the oxides. We highlight examples of S redox in cathode materials exhibiting varying degrees of anion involvement with a particular focus on the structural effects. We call attention to those with intermediate anion contribution to redox and the hybrid intercalation- and conversion-type structural mechanism at play that takes advantage of the positives of both mechanistic types to increase storage capacity while maintaining good reversibility. The hybrid mechanisms often invoke the formation of persulfides, and so a survey of binary and ternary materials containing persulfide moieties is presented to provide context for materials that show thermodynamically stable persulfide moieties.

3.
ACS Appl Mater Interfaces ; 13(25): 29461-29470, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34142812

ABSTRACT

As Li-ion battery optimization approaches theoretical limits, interest has grown in designing next-generation batteries from low-cost earth-abundant materials. Mg-S batteries are promising candidates, exhibiting widespread abundance of elemental precursors and a relatively large theoretical energy density albeit at lower cell voltage. However, Mg-S batteries exhibit poor reversibility, in part due to interactions between dissolved polysulfides and the Mg anode. Herein, we employ electrochemical experiments using Ag2S quasi-reference electrodes to probe the interactions between Mg anodes and dissolved polysulfides. We show that Mg2+ reduction (charging) is impeded in the presence of polysulfides, while Mg metal oxidation (discharging) remains facile. Large reduction overpotentials arise due to the formation of a passivation layer on the anode surface, likely composed primarily of MgS. The passivation layer is removed under oxidative conditions but quickly reforms during reduction. We discover that dissolved S8 influences the rate of MgS formation by shifting the polysulfide disproportionation equilibria. Shorter-chain polysulfides react more readily than longer-chain polysulfides at the Mg electrode, and thus, film formation is mediated by the electrochemical generation of shorter-chain polysulfide species.

4.
Nat Mater ; 19(1): 69-76, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31591528

ABSTRACT

Semiconductor structures (for example, films, wires, particles) used in photoelectrochemical devices are often decorated with nanoparticles that catalyse fuel-forming reactions, including water oxidation, hydrogen evolution or carbon-dioxide reduction. For high performance, the catalyst nanoparticles must form charge-carrier-selective contacts with the underlying light-absorbing semiconductor, facilitating either hole or electron transfer while inhibiting collection of the opposite carrier. Despite the key role played by such selective contacts in photoelectrochemical energy conversion and storage, the underlying nanoscale interfaces are poorly understood because direct measurement of their properties is challenging, especially under operating conditions. Using an n-Si/Ni photoanode model system and potential-sensing atomic force microscopy, we measure interfacial electron-transfer processes and map the photovoltage generated during photoelectrochemical oxygen evolution at nanoscopic semiconductor/catalyst interfaces. We discover interfaces where the selectivity of low-Schottky-barrier n-Si/Ni contacts for holes is enhanced via a nanoscale size-dependent pinch-off effect produced when surrounding high-barrier regions develop during device operation. These results thus demonstrate (1) the ability to make nanoscale operando measurements of contact properties under practical photoelectrochemical conditions and (2) a design principle to control the flow of electrons and holes across semiconductor/catalyst junctions that is broadly relevant to different photoelectrochemical devices.

5.
J Am Chem Soc ; 141(4): 1394-1405, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30537811

ABSTRACT

Solar water splitting provides a mechanism to convert and store solar energy in the form of stable chemical bonds. Water-splitting systems often include semiconductor photoanodes, such as n-Fe2O3 and n-BiVO4, which use photogenerated holes to oxidize water. These photoanodes often exhibit improved performance when coated with metal-oxide/(oxy)hydroxide overlayers that are catalytic for the water-oxidation reaction. The mechanism for this improvement, however, remains a controversial topic. This is, in part, due to a lack of experimental techniques that are able to directly track the flow of photogenerated holes in such multicomponent systems. In this Perspective, we illustrate how this issue can be addressed by using a second working electrode to make direct current/voltage measurements on the catalytic overlayer during operation in a photoelectrochemical cell. We discuss examples where the second working electrode is a thin metallic film deposited on the catalyst layer, as well as where it is the tip of a conducting atomic-force-microscopy probe. In applying these techniques to multiple semiconductors (Fe2O3, BiVO4, Si) paired with various metal-(oxy)hydroxide overlayers (e.g., Ni(Fe)O xH y and CoO xH y), we found in all cases investigated that the overlayers collect photogenerated holes from the semiconductor, charging to potentials sufficient to drive water oxidation. The overlayers studied thus form charge-separating heterojunctions with the semiconductor as well as serve as water-oxidation catalysts.

6.
ACS Cent Sci ; 3(9): 1015-1025, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28979943

ABSTRACT

Electrocatalysts improve the efficiency of light-absorbing semiconductor photoanodes driving the oxygen evolution reaction, but the precise function(s) of the electrocatalysts remains unclear. We directly measure, for the first time, the interface carrier transport properties of a prototypical visible-light-absorbing semiconductor, α-Fe2O3, in contact with one of the fastest known water oxidation catalysts, Ni0.8Fe0.2O x , by directly measuring/controlling the current and/or voltage at the Ni0.8Fe0.2O x catalyst layer using a second working electrode. The measurements demonstrate that the majority of photogenerated holes in α-Fe2O3 directly transfer to the catalyst film over a wide range of conditions and that the Ni0.8Fe0.2O x is oxidized by photoholes to an operating potential sufficient to drive water oxidation at rates that match the photocurrent generated by the α-Fe2O3. The Ni0.8Fe0.2O x therefore acts as both a hole-collecting contact and a catalyst for the photoelectrochemical water oxidation process. Separate measurements show that the illuminated junction photovoltage across the α-Fe2O3|Ni0.8Fe0.2O x interface is significantly decreased by the oxidation of Ni2+ to Ni3+ and the associated increase in the Ni0.8Fe0.2O x electrical conductivity. In sum, the results illustrate the underlying operative charge-transfer and photovoltage generation mechanisms of catalyzed photoelectrodes, thus guiding their continued improvement.

7.
Acc Chem Res ; 49(4): 733-40, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27035051

ABSTRACT

Light-absorbing semiconductor electrodes coated with electrocatalysts are key components of photoelectrochemical energy conversion and storage systems. Efforts to optimize these systems have been slowed by an inadequate understanding of the semiconductor-electrocatalyst (sem|cat) interface. The sem|cat interface is important because it separates and collects photoexcited charge carriers from the semiconductor. The photovoltage generated by the interface drives "uphill" photochemical reactions, such as water splitting to form hydrogen fuel. Here we describe efforts to understand the microscopic processes and materials parameters governing interfacial electron transfer between light-absorbing semiconductors, electrocatalysts, and solution. We highlight the properties of transition-metal oxyhydroxide electrocatalysts, such as Ni(Fe)OOH, because they are the fastest oxygen-evolution catalysts known in alkaline media and are (typically) permeable to electrolyte. We describe the physics that govern the charge-transfer kinetics for different interface types, and show how numerical simulations can explain the response of composite systems. Emphasis is placed on "limiting" behavior. Electrocatalysts that are permeable to electrolyte form "adaptive" junctions where the interface energetics change during operation as charge accumulates in the catalyst, but is screened locally by electrolyte ions. Electrocatalysts that are dense, and thus impermeable to electrolyte, form buried junctions where the interface physics are unchanged during operation. Experiments to directly measure the interface behavior and test the theory/simulations are challenging because conventional photoelectrochemical techniques do not measure the electrocatalyst potential during operation. We developed dual-working-electrode (DWE) photoelectrochemistry to address this limitation. A second electrode is attached to the catalyst layer to sense or control current/voltage independent from that of the semiconductor back ohmic contact. Consistent with simulations, electrolyte-permeable, redox-active catalysts such as Ni(Fe)OOH form "adaptive" junctions where the effective barrier height for electron exchange depends on the potential of the catalyst. This is in contrast to sem|cat interfaces with dense electrolyte-impermeable catalysts, such as nanocrystalline IrOx, that behave like solid-state buried (Schottky-like) junctions. These results elucidate a design principle for catalyzed photoelectrodes. The buried heterojunctions formed by dense catalysts are often limited by Fermi-level pinning and low photovoltages. Catalysts deposited by "soft" methods, such as electrodeposition, form adaptive junctions that tend to provide larger photovoltages and efficiencies. We also preview efforts to improve theory/simulations to account for the presence of surface states and discuss the prospect of carrier-selective catalyst contacts.

SELECTION OF CITATIONS
SEARCH DETAIL
...