Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38648426
2.
J Inorg Biochem ; 102(9): 1765-76, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18614239

ABSTRACT

Analysis of metal-protein interaction distances, coordination numbers, B-factors (displacement parameters), and occupancies of metal-binding sites in protein structures determined by X-ray crystallography and deposited in the PDB shows many unusual values and unexpected correlations. By measuring the frequency of each amino acid in metal ion-binding sites, the positive or negative preferences of each residue for each type of cation were identified. Our approach may be used for fast identification of metal-binding structural motifs that cannot be identified on the basis of sequence similarity alone. The analysis compares data derived separately from high and medium-resolution structures from the PDB with those from very high-resolution small-molecule structures in the Cambridge Structural Database (CSD). For high-resolution protein structures, the distribution of metal-protein or metal-water interaction distances agrees quite well with data from CSD, but the distribution is unrealistically wide for medium (2.0-2.5A) resolution data. Our analysis of cation B-factors versus average B-factors of atoms in the cation environment reveals substantial numbers of structures contain either an incorrect metal ion assignment or an unusual coordination pattern. Correlation between data resolution and completeness of the metal coordination spheres is also found.


Subject(s)
Databases, Protein , Metalloproteins/chemistry , Metals/chemistry , Amino Acids/chemistry , Binding Sites , Molecular Structure , Protein Binding
3.
Protein Sci ; 17(4): 623-32, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18359856

ABSTRACT

A nonredundant set of 9081 protein crystal structures in the Protein Data Bank was used to examine the solvent content, the number of polypeptide chains, and the oligomeric states of proteins in crystals as a function of crystal symmetry (as classified by crystal systems and space groups). It was found that there is a correlation between solvent content and crystal symmetry. Surprisingly, proteins crystallizing in lower symmetry systems have lower solvent content compared to those crystallizing in higher symmetry systems. Nevertheless, there is no universal correlation between solvent content and preferences of macromolecules to crystallize in certain space groups. Crystal symmetry as a function of oligomeric state was examined, where trimers, tetramers, and hexamers were found to prefer to crystallize in systems where the oligomer symmetry could be incorporated in the crystal symmetry. Our analysis also shows that the frequency distribution within the enantiomorphous pairs of space groups does not differ significantly, in contrast to previous reports.


Subject(s)
Crystallography, X-Ray/methods , Protein Structure, Quaternary , Proteins/chemistry , Solvents/chemistry , Crystallization , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...