Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208116

ABSTRACT

It is a common situation that seismic excitations may lead to collisions between adjacent civil engineering structures. This phenomenon, called earthquake-induced structural pounding, may result in serious damage or even the total collapse of the colliding structures. Filling the gap between two buildings erected close to one another by using visco-elastic materials can be considered to be one of the most effective methods to avoid seismic pounding. In this paper, a new polymer-metal composite material made of polyurethane and closed-cell aluminum foam is proposed as a pounding energy absorber for protection against earthquake hazards. The composite was created in two versions, with and without an adhesive interface. A series of experiments which reflect the conditions of seismic collision were performed: quasi-static compression, dynamic uniaxial compression and low-cycle dynamic compression with 10 loops of unloading at 10% strain. The composite material's behavior was observed and compared with respect to uniform material specimens: polymer and metal foam. The experimental results showed that the maximum energy absorption efficiency in the case of the new material with the bonding layer was improved by 34% and 49% in quasi-static and dynamic conditions, respectively, in comparison to a sole polymer bumper. Furthermore, the newly proposed composites dissipated from 35% to 44% of the energy absorbed in the cyclic procedure, whereas the polymer specimen dissipated 25%. The capacity of the maintenance of the dissipative properties throughout the complete low-cycle loading was also satisfactory: it achieved an additional 100% to 300% of the energy dissipated in the first loading-unloading loop.

2.
Polymers (Basel) ; 12(10)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076343

ABSTRACT

The aim of the present study is to consider the idea of using polyurethane flexible adhesive in to reduce the vibrations in structures exposed to dynamic loads and evaluate their damping properties in relation to large deformations. Firstly, two aluminium cantilever beams, simulating structural elements (without and with polyurethane layer in the form of tape), were analysed, in order to check the damping of the unconstrained polymer layer. In the second stage of the study, a composite beam consisting of two aluminium flat beams bonded with polymer adhesive was considered, so as to check the damping of the constrained polymer layer. Dynamic parameters, such as modes of free vibrations, corresponding natural frequencies and damping ratios, were determined and compared. The third stage of the investigation was aimed at solving the problem of the additional mass of the applied polymer layer, which influences the frequencies and damping of the tested structure. A special separating procedure is proposed that makes it possible to calculate the corrected real values of the polymer layer's damping. The results of the study clearly show that the response of the composite aluminium beam with and without polymer adhesive layer is mainly influenced by the layers' thickness and the large strain deformation, in terms of its damping characteristics. The use of polymer adhesive layers in constrained and unconstrained conditions leads to a significant reduction in the vibrations of tested beams, while preserving their stiffness at nearly the same level. The applied analysis procedure made it possible for us to separate the damping properties of the analysed polymer layers and evaluate them independently with respect to the influence of integrated structural elements on damping.

SELECTION OF CITATIONS
SEARCH DETAIL
...