Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(40): e202300696, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-36917701

ABSTRACT

Hydrogen bonding is a key molecular interaction in biological processes, drug delivery, and catalysis. This report describes a high throughput UV-Vis spectroscopic method to measure hydrogen bonding capacity using a pyrazinone sensor. This colormetric sensor reversibly binds to a hydrogen bond donor, resulting in a blue shift as additional equivalents of donor are added. Titration with excess equivalents of donor is used to determine the binding coefficient, ln(Keq ). Over 100 titrations were performed for a variety of biologically relevant compounds. This data enabled development a multiple linear regression model that is capable of predicting 95 % of ln(Keq ) values within 1 unit, allowing for the estimation of hydrogen bonding affinity from a single measurement. To show the effectiveness of the single point measurements, hydrogen bond strengths were obtained for a set of carboxylic acid bioisosteres. The values from the single point measurements were validated with full titrations.


Subject(s)
Colorimetry , Colorimetry/methods , Hydrogen Bonding , Ligands
2.
Org Biomol Chem ; 16(4): 526-530, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29292462

ABSTRACT

Herein, palladium-catalyzed Miyaura borylation of 4-bromo-2,4'-bithiazoles followed by Suzuki-Miyaura cross-coupling reaction (named the MBSC process) with (hetero)aryl- and alkenyl halides is reported. This methodology offers rapid access to various 2',4-disubstituted 2,4'-bithiazole features including naturally-occurring 4-alkenylated and 4-pyridinylated 2,4'-bithiazoles. To prove its application, a concise approach for the synthesis of a heterocyclic cluster of the thiopeptide d-series antibiotic GE2270 is reported through a late-stage MBSC strategy.


Subject(s)
Hydrocarbons, Halogenated/chemistry , Thiazoles/chemical synthesis , Catalysis , Chemistry Techniques, Synthetic/methods , Palladium/chemistry , Peptides, Cyclic/chemistry , Stereoisomerism , Thiazoles/chemistry
3.
Beilstein J Org Chem ; 13: 1407-1412, 2017.
Article in English | MEDLINE | ID: mdl-28781706

ABSTRACT

A straightforward enantiomerically pure synthesis of the heterocyclic core of the D-series GE2270 is reported. The synthetic strategy combines the Hantzsch thiazole's building condensation with a cross-coupling reaction including direct C-H hetarylation to build and connect step-by-step thiazolyl moieties to the 5-bromopicolinate as readily available starting material.

4.
ACS Med Chem Lett ; 8(8): 864-868, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28835803

ABSTRACT

The oxetane ring serves as an isostere of the carbonyl moiety, suggesting that oxetan-3-ol may be considered as a potential surrogate of the carboxylic acid functional group. To investigate this structural unit, as well as thietan-3-ol and the corresponding sulfoxide and sulfone derivatives, as potential carboxylic acid bioisosteres, a set of model compounds has been designed, synthesized, and evaluated for physicochemical properties. Similar derivatives of the cyclooxygenase inhibitor, ibuprofen, were also synthesized and evaluated for inhibition of eicosanoid biosynthesis in vitro. Collectively, the data suggest that oxetan-3-ol, thietan-3-ol, and related structures hold promise as isosteric replacements of the carboxylic acid moiety.

5.
Acta Neuropathol Commun ; 4(1): 106, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27687527

ABSTRACT

Neurodegenerative disorders referred to as tauopathies, which includes Alzheimer's disease (AD), are characterized by insoluble deposits of the tau protein within neuron cell bodies and dendritic processes in the brain. Tau is normally associated with microtubules (MTs) in axons, where it provides MT stabilization and may modulate axonal transport. However, tau becomes hyperphosphorylated and dissociates from MTs in tauopathies, with evidence of reduced MT stability and defective axonal transport. This has led to the hypothesis that MT-stabilizing drugs may have potential for the treatment of tauopathies. Prior studies demonstrated that the brain-penetrant MT-stabilizing drug, epothilone D, had salutary effects in transgenic (Tg) mouse models of tauopathy, improving MT density and axonal transport, while reducing axonal dystrophy. Moreover, epothilone D enhanced cognitive performance and decreased hippocampal neuron loss, with evidence of reduced tau pathology. To date, epothilone D has been the only non-peptide small molecule MT-stabilizing agent to be evaluated in Tg tau mice. Herein, we demonstrate the efficacy of another small molecule brain-penetrant MT-stabilizing agent, dictyostatin, in the PS19 tau Tg mouse model. Although dictyostatin was poorly tolerated at once-weekly doses of 1 mg/kg or 0.3 mg/kg, likely due to gastrointestinal (GI) complications, a dictyostatin dose of 0.1 mg/kg was better tolerated, such that the majority of 6-month old PS19 mice, which harbor a moderate level of brain tau pathology, completed a 3-month dosing study without evidence of significant body weight loss. Importantly, as previously observed with epothilone D, the dictyostatin-treated PS19 mice displayed improved MT density and reduced axonal dystrophy, with a reduction of tau pathology and a trend toward increased hippocampal neuron survival relative to vehicle-treated PS19 mice. Thus, despite evidence of dose-limiting peripheral side effects, the observed positive brain outcomes in dictyostatin-treated aged PS19 mice reinforces the concept that MT-stabilizing compounds have significant potential for the treatment of tauopathies.

6.
J Med Chem ; 59(7): 3183-203, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26967507

ABSTRACT

The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physicochemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure-property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group.


Subject(s)
Carboxylic Acids/chemistry , Phenylpropionates/chemistry , Plasma/chemistry , Plasma/drug effects , Chemistry, Pharmaceutical , Mass Spectrometry , Models, Molecular , Molecular Structure , Structure-Activity Relationship
7.
Chemistry ; 17(51): 14450-63, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22095625

ABSTRACT

Both base-assisted non-concerted metallation-deprotonation (nCMD) and concerted metallation-deprotonation (CMD) have been identified as two potent operating mechanisms in palladium-catalysed direct C-H coupling of oxazole and thiazole-4-carboxylate esters with halides through base- and solvent-effect experiments. Novel C2- and C5-selective CMD direct arylation procedures in oxazole- and thiazole-4-carboxylate series were then designed by controlling the balance between electronic and steric factors. Notably, charge interactions between the palladium catalyst and substrate were identified as a parameter for controlling selectivity and reducing the impact of steric factors in the CMD reaction.


Subject(s)
Carboxylic Acids/chemical synthesis , Oxazoles/chemical synthesis , Thiazoles/chemical synthesis , Carboxylic Acids/chemistry , Catalysis , Combinatorial Chemistry Techniques , Molecular Structure , Oxazoles/chemistry , Palladium , Solvents , Thiazoles/chemistry
8.
Beilstein J Org Chem ; 7: 1584-601, 2011.
Article in English | MEDLINE | ID: mdl-22238536

ABSTRACT

Catalytic direct (hetero)arylation of (hetero)arenes is an attractive alternative to traditional Kumada, Stille, Negishi and Suzuki-Miyaura cross-coupling reactions, notably as it avoids the prior preparation and isolation of (hetero)arylmetals. Developments of this methodology in the oxazole series are reviewed in this article. Methodologies, selectivity, mechanism and future aspects are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...