Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(16): e202400992, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38373040

ABSTRACT

A Surface OrganoMetallic Chemistry (SOMC) approach is used to prepare a novel hafnium-iridium catalyst immobilized on silica, HfIr/SiO2, featuring well-defined [≡SiOHf(CH2 tBu)2(µ-H)3IrCp*] surface sites. Unlike the monometallic analogous materials Hf/SiO2 and Ir/SiO2, which promote n-pentane deuterogenolysis through C-C bond scission, we demonstrate that under the same experimental conditions (1 bar D2, 250 °C, 3 h, 0.5 mol %), the heterobimetallic catalyst HfIr/SiO2 is highly efficient and selective for the perdeuteration of alkanes with D2, exemplified on n-pentane, without substantial deuterogenolysis (<2 % at 95 % conversion). Furthermore this HfIr/SiO2 catalyst is robust and can be re-used several times without evidence of decomposition. This represents substantial advance in catalytic H/D isotope exchange (HIE) reactions of C(sp3)-H bonds.

2.
Dalton Trans ; 50(2): 504-510, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33210676

ABSTRACT

A rare heterobimetallic oxidative addition of X-H (X = C, O) bonds is reported. DFT suggests that steric constraints around the bimetallic core play a critical role to synergistically activate C-H bonds across the two metals and thus explains the exceptional H/D exchange catalytic activity of unhindered surface organometallic Ta/Ir species observed experimentally.

3.
J Am Chem Soc ; 141(49): 19321-19335, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31710215

ABSTRACT

A novel heterobimetallic tantalum/iridium hydrido complex, [{Ta(CH2tBu)3}{IrH2(Cp*)}] 1, featuring a very short metal-metal bond, has been isolated through an original alkane elimination route from Ta(CHtBu)(CH2tBu)3 and Cp*IrH4. This molecular precursor has been used to synthesize well-defined silica-supported low-coordinate heterobimetallic hydrido species [≡SiOTa(CH2tBu)2{IrH2(Cp*)}], 5, and [≡SiOTa(CH2tBu)H{IrH2(Cp*)}], 6, using a surface organometallic chemistry (SOMC) approach. The SOMC methodology prevents undesired dimerization as encountered in solution and leading to a tetranuclear species [{Ta(CH2tBu)2}(Cp*IrH)]2, 4. This approach therefore allows access to unique low-coordinate species not attainable in solution. These original supported Ta/Ir species exhibit drastically enhanced catalytic performances in H/D exchange reactions with respect to (i) monometallic analogues as well as (ii) homogeneous systems. In particular, material 6 promotes the H/D exchange between fluorobenzene and C6D6 or D2 as deuterium sources with excellent productivity (TON up to 1422; TOF up to 23.3 h-1) under mild conditions (25 °C, sub-atmospheric D2 pressure) without any additives.

SELECTION OF CITATIONS
SEARCH DETAIL
...