Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958646

ABSTRACT

Pancreatic cancer is characterized by an extensive fibroinflammatory microenvironment. During carcinogenesis, normal stromal cells are converted to cytokine-high cancer associated fibroblasts (CAFs). The mechanisms underlying this conversion, including regulation and function of fibroblast-derived cytokines, are poorly understood. Thus, efforts to target CAFs therapeutically have so far failed. Here, we show that signals from epithelial cells expressing oncogenic KRAS -a hallmark pancreatic cancer mutation- activate fibroblast autocrine signaling, which drives expression of the cytokine interleukin-33 (IL-33). Stromal IL-33 expression remains high and dependent on epithelial KRAS throughout carcinogenesis; in turn, environmental stress induces IL-33 secretion. Using compartment-specific IL-33 knockout mice, we observed that lack of stromal IL-33 leads to profound reprogramming of multiple components of the pancreatic tumor microenvironment, including CAFs, myeloid cells and lymphocytes. Notably, loss of stromal IL-33 leads to an increase in CD8+ T cell infiltration and activation, and, ultimately, reduced tumor growth.

2.
Cell Mol Gastroenterol Hepatol ; 13(6): 1673-1699, 2022.
Article in English | MEDLINE | ID: mdl-35245687

ABSTRACT

BACKGROUND & AIMS: Oncogenic Kirsten Rat Sarcoma virus (KRAS) is the hallmark mutation of human pancreatic cancer and a driver of tumorigenesis in genetically engineered mouse models of the disease. Although the tumor cell-intrinsic effects of oncogenic Kras expression have been widely studied, its role in regulating the extensive pancreatic tumor microenvironment is less understood. METHODS: Using a genetically engineered mouse model of inducible and reversible oncogenic Kras expression and a combination of approaches that include mass cytometry and single-cell RNA sequencing we studied the effect of oncogenic KRAS in the tumor microenvironment. RESULTS: We have discovered that non-cell autonomous (ie, extrinsic) oncogenic KRAS signaling reprograms pancreatic fibroblasts, activating an inflammatory gene expression program. As a result, fibroblasts become a hub of extracellular signaling, and the main source of cytokines mediating the polarization of protumorigenic macrophages while also preventing tissue repair. CONCLUSIONS: Our study provides fundamental knowledge on the mechanisms underlying the formation of the fibroinflammatory stroma in pancreatic cancer and highlights stromal pathways with the potential to be exploited therapeutically.


Subject(s)
Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Animals , Fibroblasts/metabolism , Kirsten murine sarcoma virus/metabolism , Mice , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Microenvironment , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...