Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(7)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35407334

ABSTRACT

Endothelial coverage of an exposed cardiovascular stent surface leads to the occurrence of restenosis and late-stent thrombosis several months after implantation. To overcome this difficulty, modification of stent surfaces with topographical or biochemical features may be performed to increase endothelial cells' (ECs) adhesion and/or migration. This work combines both strategies on cobalt-chromium (CoCr) alloy and studies the potential synergistic effect of linear patterned surfaces that are obtained by direct laser interference patterning (DLIP), coupled with the use of Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR) peptides. An extensive characterization of the modified surfaces was performed by using AFM, XPS, surface charge, electrochemical analysis and fluorescent methods. The biological response was studied in terms of EC adhesion, migration and proliferation assays. CoCr surfaces were successfully patterned with a periodicity of 10 µm and two different depths, D (≈79 and 762 nm). RGD and YIGSR were immobilized on the surfaces by CPTES silanization. Early EC adhesion was increased on the peptide-functionalized surfaces, especially for YIGSR compared to RGD. High-depth patterns generated 80% of ECs' alignment within the topographical lines and enhanced EC migration. It is noteworthy that the combined use of the two strategies synergistically accelerated the ECs' migration and proliferation, proving the potential of this strategy to enhance stent endothelialization.

2.
Adv Healthc Mater ; 6(19)2017 Oct.
Article in English | MEDLINE | ID: mdl-28714577

ABSTRACT

The main drawbacks of cardiovascular bare-metal stents (BMS) are in-stent restenosis and stent thrombosis as a result of an incomplete endothelialization after stent implantation. Nano- and microscale modification of implant surfaces is a strategy to recover the functionality of the artery by stimulating and guiding molecular and biological processes at the implant/tissue interface. In this study, cobalt-chromium (CoCr) alloy surfaces are modified via direct laser interference patterning (DLIP) in order to create linear patterning onto CoCr surfaces with different periodicities (≈3, 10, 20, and 32 µm) and depths (≈20 and 800 nm). Changes in surface topography, chemistry, and wettability are thoroughly characterized before and after modification. Human umbilical vein endothelial cells' adhesion and spreading are similar for all patterned and plain CoCr surfaces. Moreover, high-depth series induce cell elongation, alignment, and migration along the patterned lines. Platelet adhesion and aggregation decrease in all patterned surfaces compared to CoCr control, which is associated with changes in wettability and oxide layer characteristics. Cellular studies provide evidence of the potential of DLIP topographies to foster endothelialization without enhancement of platelet adhesion, which will be of high importance when designing new BMS in the future.


Subject(s)
Blood Platelets/cytology , Blood Platelets/physiology , Blood Vessel Prosthesis , Chromium Alloys/radiation effects , Endothelial Cells/cytology , Endothelial Cells/physiology , Stents , Cell Adhesion/physiology , Cells, Cultured , Chromium Alloys/chemistry , Equipment Failure Analysis , Humans , Lasers , Materials Testing , Prosthesis Design , Radiation Dosage , Surface Properties/radiation effects
3.
Dent Mater ; 33(1): e28-e38, 2017 01.
Article in English | MEDLINE | ID: mdl-27745774

ABSTRACT

OBJECTIVE: The aim of this work is to generate micrometric linear patterns with different topography on dental grade zirconia by means of UV laser interference and to assess the quality of the produced surface, both in term of the geometry produced and of the surface damage induced in the material. METHODS: The third harmonic of a Q-switched Nd:YAG laser (355nm, pulse duration of 10ns and repetition rate of 1Hz) was employed to pattern the surface of 3Y-TZP with micrometric-spaced lines. The resulting topography was characterized with White Light Interferometry and Scanning electron microscopy: pattern depth (H), amplitude roughness parameters (Sa, filtered-Sa), Fourier spatial analysis and collateral damages were related to laser fluence and number of pulses employed. RESULTS: With our experimental setup, line-patterning of zirconia surfaces can be achieved with periodicities comprised within 5 and 15µm. Tuning laser parameters allows varying independently pattern depth, overall roughness and surface finish. Increasing both fluence and number of pulses allows producing deeper patterns (maximum achievable depth of 1µm). However, increasing the number of pulses has a detrimental effect on the quality of the produced lines. Surface damage (intergranular cracking, open porosity and nano-droplets formation) can be generated, depending on laser parameters. SIGNIFICANCE: This work provides a parametric analysis of surface patterning by laser interference on 3Y-TZP. Best conditions in terms of quality of the produced pattern and minimum material damage are obtained for low number of pulses with high laser fluence. With the employed method we can produce zirconia materials with controlled topography that are expected to enhance biological response and mechanical performance of dental components.


Subject(s)
Microscopy, Electron, Scanning , Zirconium , Dental Materials , Lasers, Solid-State , Materials Testing , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...