Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540730

ABSTRACT

Conjugated polymers with ionic pendant groups (CPEs) are receiving increasing attention as solution-processed interfacial materials for organic solar cells (OSCs). Various anionic CPEs have been successfully used, on top of ITO (Indium Tin Oxide) electrodes, as solution-processed anode interlayers (AILs) for conventional devices with direct geometry. However, the development of CPE AILs for OSC devices with inverted geometry is an important topic that still needs to be addressed. Here, we have designed three anionic CPEs bearing alkyl-potassium-sulfonate side chains. Their functional behavior as anode interlayers has been investigated in P3HT:PC61BM (poly(3-hexylthiophene): [6,6]-phenyl C61 butyric acid methyl ester) devices with an inverted geometry, using a hole collecting silver electrode evaporated on top. Our results reveal that to obtain effective anode modification, the CPEs' conjugated backbone has to be tailored to grant self-doping and to have a good energy-level match with the photoactive layer. Furthermore, the sulfonate moieties not only ensure the solubility in polar orthogonal solvents, induce self-doping via a right choice of the conjugated backbone, but also play a role in the gaining of hole selectivity of the top silver electrode.


Subject(s)
Electric Power Supplies , Polyelectrolytes/chemistry , Sulfonic Acids/chemistry , Sunlight , Electrochemistry , Electrodes
2.
J Colloid Interface Sci ; 538: 611-619, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30553094

ABSTRACT

In this work a novel combination of side chain functionalities, alkyl-phosphonate (EP) and alkyl-ammonium bromide (NBr) groups, on a polyfluorene backbone (PF-NBr-EP) was studied as cathode interfacial material (CIM) in polymer-based solar cells. The devices were made with a conventional geometry, with PTB7:PC71 BM as active layer and aluminum as metal electrode. The CIM showed good solubility in ethanol and film forming ability onto the active layer so that its deposition could be finely tuned. The interface engineering imparted by this CIM was assessed and discussed through kelvin probe force microscopy (KPFM), impedance spectroscopy, charge recombination and electron transport characterizations. To discriminate between the interfacial modifications imparted by the interlayer and its solvent, we included in this study a surface ethanol treated device. In the optimized conditions an average power conversion efficiency of 7.24% was obtained, which is about 60% higher when compared to devices made with bare Al and 26% when compared to devices made with a standard calcium/aluminum cathode. Besides performances, some insights about the devices shelf life stability are also presented. A good persistency through aging was found for the cathode interfacial engineering capabilities of PF-NBr-EP.

SELECTION OF CITATIONS
SEARCH DETAIL
...