Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2401007, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695220

ABSTRACT

Self-healing microelectronics are needed for costly applications with limited or without access. They are needed in fields such as space exploration to increase lifetime and decrease both costs and the environmental impact. While advanced self-healing mechanisms for polymers are numerous, practical ways for self-healing in metal films have yet to be found. A concept for an autonomous intrinsic self-healing metallic film system is developed, allowing the healing of cracks in metallic films on flexible substrates. The concept relies on stabilizing metastable thin films with high mixing enthalpy via segregation barriers. This allows the films to possess autonomous intrinsic self-healing capabilities triggered by cracking at temperatures not detrimental to flexible microelectronics. The effect will be shown on metastable Mo1-xAgx thin films, stabilized via a Mo segregation barrier. Without a segregation barrier, the system is known to exhibit spontaneous Ag particle formation on the surface. This property is controlled and directed to heal cracks and partially restore the electro-mechanical properties of the multilayer system. This mechanism opens up the field of self-healing thin metallic films that could profoundly impact the design of future microelectronics.

2.
Commun Chem ; 6(1): 166, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580376

ABSTRACT

Metallic nanoparticles are widely explored for boosting light-matter coupling, optoelectronic response, and improving photocatalytic performance of two-dimensional (2D) materials. However, the target area is restricted to either top or bottom of the 2D flakes. Here, we introduce an approach for edge-specific nanoparticle decoration via light-assisted reduction of silver ions and merging of silver seeds. We observe arrays of the self-limited in size silver nanoparticles along tungsten diselenide WSe2 nanoribbon edges. The density of nanoparticles is tunable by adjusting the laser fluence. Scanning electron microscopy, atomic force microscopy, and Raman spectroscopy are used to investigate the size, distribution, and photo-response of the deposited plasmonic nanoparticles on the quasi-one-dimensional nanoribbons. We report an on-surface synthesis path for creating mixed-dimensional heterostructures and heterojunctions with potential applications in opto-electronics, plasmonics, and catalysis, offering improved light matter coupling, optoelectronics response, and photocatalytic performance of 2D materials.

3.
J Mater Res ; 38(13): 3324-3335, 2023.
Article in English | MEDLINE | ID: mdl-37485024

ABSTRACT

Extracting mechanical data of thin films on rigid substrates using nanoindentation is compromised by the mechanical properties of underlying substrates, which may falsify the obtained results. With ongoing miniaturization, the substrate influence becomes more pronounced. In this study we present an experimental approach to extract the true Young's modulus of crystalline-amorphous multilayers by means of nanoindentation. We used 1 µm thick multilayers comprised of amorphous CuZr and nanocrystalline Cu. All films were deposited onto two rigid substrate types with Young's moduli below and above the ones expected for the deposits (film-to-substrate hardness and elastic moduli ratios between 0.3 to 1.1 and 0.6 to 1.5, respectively). Linear extrapolation of indentation data to zero indentation depth allows to precisely determine the real film's Young's modulus. Same investigations were performed on monolithic Cu and CuZr films of same thickness. While the hardness values change with the variation of the bilayer thickness of the multilayer structures, the Young's modulus is not affected by the interfaces.

4.
Nanomaterials (Basel) ; 13(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37513096

ABSTRACT

Highly effective yet affordable non-noble metal catalysts are a key component for advances in hydrogen generation via electrolysis. The synthesis of catalytic heterostructures containing established Ni in combination with surface NiO, Ni(OH)2, and NiOOH domains gives rise to a synergistic effect between the surface components and is highly beneficial for water splitting and the hydrogen evolution reaction (HER). Herein, the intrinsic catalytic activity of pure Ni and the effect of partial electrochemical oxidation of ultra-smooth magnetron sputter-deposited Ni surfaces are analyzed by combining electrochemical measurements with transmission electron microscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. The experimental investigations are supplemented by Density Functional Theory and Kinetic Monte Carlo simulations. Kinetic parameters for the HER are evaluated while surface roughening is carefully monitored during different Ni film treatment and operation stages. Surface oxidation results in the dominant formation of Ni(OH)2, practically negligible surface roughening, and 3-5 times increased HER exchange current densities. Higher levels of surface roughening are observed during prolonged cycling to deep negative potentials, while surface oxidation slows down the HER activity losses compared to as-deposited films. Thus, surface oxidation increases the intrinsic HER activity of nickel and is also a viable strategy to improve catalyst durability.

5.
Mater Today Bio ; 16: 100378, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36039102

ABSTRACT

This paper envisions Ti40Zr10Cu36Pd14 bulk metallic glass as an oral implant material and evaluates its antibacterial performance in the inhabitation of oral biofilm formation in comparison with the gold standard Ti-6Al-4V implant material. Metallic glasses are superior in terms of biocorrosion and have a reduced stress shielding effect compared with their crystalline counterparts. Dynamic mechanical and thermal expansion analyses on Ti40Zr10Cu36Pd14 show that these materials can be thermomechanically shaped into implants. Static water contact angle measurement on samples' surface shows an increased surface wettability on the Ti-6Al-4V surface after 48 â€‹h incubation in the water while the contact angle remains constant for Ti40Zr10Cu36Pd14. Further, high-resolution transmission and scanning transmission electron microscopy analysis have revealed that Ti40Zr10Cu36Pd14 interior is fully amorphous, while a 15 â€‹nm surface oxide is formed on its surface and assigned as copper oxide. Unlike titanium oxide formed on Ti-6Al-4V, copper oxide is hydrophobic, and its formation reduces surface wettability. Further surface analysis by X-ray photoelectron spectroscopy confirmed the presence of copper oxide on the surface. Metallic glasses cytocompatibility was first demonstrated towards human gingival fibroblasts, and then the antibacterial properties were verified towards the oral pathogen Aggregatibacter actinomycetemcomitans responsible for oral biofilm formation. After 24 â€‹h of direct infection, metallic glasses reported a >70% reduction of bacteria viability and the number of viable colonies was reduced by ∼8 times, as shown by the colony-forming unit count. Field emission scanning electron microscopy and fluorescent images confirmed the lower surface colonization of metallic glasses in comparison with controls. Finally, oral biofilm obtained from healthy volunteers was cultivated onto specimens' surface, and proteomics was applied to study the surface property impact on species composition within the oral plaque.

6.
ACS Appl Nano Mater ; 4(1): 61-70, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33521588

ABSTRACT

Improving the interface stability for nanosized thin films on brittle substrates is crucial for technological applications such as microelectronics because the so-called brittle-ductile interfaces limit their overall reliability. By tuning the thin film properties, interface adhesion can be improved because of extrinsic toughening mechanisms during delamination. In this work, the influence of the film microstructure on interface adhesion was studied on a model brittle-ductile interface consisting of nanosized Cu films on brittle glass substrates. Therefore, 110 nm thin Cu films were deposited on glass substrates using magnetron sputtering. While film thickness, residual stresses, and texture of the Cu films were maintained comparable in the sputtering processes, the film microstructure was varied during deposition and via isothermal annealing, resulting in four different Cu films with bimodal grain size distributions. The interface adhesion of each Cu film was then determined using stressed Mo overlayers, which triggered Cu film delaminations in the shape of straight, spontaneous buckles. The mixed-mode adhesion energy for each film ranged from 2.35 J/m2 for the films with larger grains to 4.90 J/m2 for the films with the highest amount of nanosized grains. This surprising result could be clarified using an additional study of the buckles using focused ion beam cutting and quantification via confocal laser scanning microscopy to decouple and quantify the amount of elastic and plastic deformation stored in the buckled thin film. It could be shown that the films with smaller grains exhibit the possibility of absorbing a higher amount of energy during delamination, which explains their higher adhesion energy.

SELECTION OF CITATIONS
SEARCH DETAIL
...