Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1589, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383494

ABSTRACT

Single-shot real-time femtophotography is indispensable for imaging ultrafast dynamics during their times of occurrence. Despite their advantages over conventional multi-shot approaches, existing techniques confront restricted imaging speed or degraded data quality by the deployed optoelectronic devices and face challenges in the application scope and acquisition accuracy. They are also hindered by the limitations in the acquirable information imposed by the sensing models. Here, we overcome these challenges by developing swept coded aperture real-time femtophotography (SCARF). This computational imaging modality enables all-optical ultrafast sweeping of a static coded aperture during the recording of an ultrafast event, bringing full-sequence encoding of up to 156.3 THz to every pixel on a CCD camera. We demonstrate SCARF's single-shot ultrafast imaging ability at tunable frame rates and spatial scales in both reflection and transmission modes. Using SCARF, we image ultrafast absorption in a semiconductor and ultrafast demagnetization of a metal alloy.

2.
Opt Express ; 31(16): 25840-25849, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710459

ABSTRACT

We demonstrate experimentally that frequency resolved optical switching (FROSt) can be used to characterize ultra-broadband pulses at high repetition rates up to 500 kHz. Specifically, we present the complete temporal characterization of an optical parametric amplifier (OPA), from the supercontinuum (SC) to the second stage of amplification. Simultaneous characterization of co-propagating signal and idler pulses enables retrieval of their group delay, as well as their temporal phase and intensity. Our study focuses on an extensive frequency range spanning the infrared region (1.2 to 2.4 µm) and confirms the strength and convenience of FROSt as a single tool for characterizing a wide range of pulses at high repetition rates.

3.
Opt Express ; 31(9): 14954-14964, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37157348

ABSTRACT

We report on an optical architecture delivering sub-120 femtosecond laser pulses of 20 µJ tunable from 5.5 µm to 13 µm in the mid-infrared range (mid-IR). The system is based on a dual-band frequency domain optical parametric amplifier (FOPA) optically pumped by a Ti:Sapphire laser and amplifying 2 synchronized femtosecond pulses each with a widely tunable wavelength around 1.6 and 1.9 µm respectively. These amplified pulses are then combined in a GaSe crystal to produce the mid-IR few-cycle pulses by means of difference frequency generation (DFG). The architecture provides a passively stabilized carrier-envelope phase (CEP) whose fluctuations has been characterized to 370 mrad RMS.

4.
Phys Rev Lett ; 130(7): 073201, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36867796

ABSTRACT

Studying the dynamics of dark states is challenging due to their inability to undergo single-photon emission or absorption. This challenge is made even more difficult for dark autoionizing states owing to their ultrashort lifetime of a few femtoseconds. High-order harmonic spectroscopy recently appeared as a novel method to probe the ultrafast dynamics of a single atomic or molecular state. Here, we demonstrate the emergence of a new type of ultrafast resonance state as a manifestation of coupling between Rydberg and a dark autoionizing state dressed by a laser photon. Through high-order harmonic generation, this resonance results in extreme ultraviolet light emission that is more than one order of magnitude stronger than for the off-resonance case. The induced resonance can be leveraged to study the dynamics of a single dark autoionizing state and the transient changes in the dynamics of real states due to their overlap with the virtual laser-dressed states. In addition, the present results allow the generation of coherent ultrafast extreme ultraviolet light for advanced ultrafast science applications.

5.
Rev Sci Instrum ; 93(7): 073001, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35922312

ABSTRACT

Instruments based on the magneto-optical Kerr effect are routinely used to probe surface magnetic properties. These tools rely on the characterization of the polarization state of reflected light from the sample to collect information on its magnetization. Here, we present a theoretical optimization of common setups based on the magneto-optical Kerr effect. A detection scheme based on a simple analyzer and photodetector and one made from a polarizing beam splitter and balanced photodetectors are considered. The effect of including a photoelastic modulator (PEM) and a lock-in amplifier to detect the signal at harmonics of the modulating frequency is studied. Jones formalism is used to derive general expressions that link the intensity of the measured signal to the magneto-optical Fresnel reflection coefficients for any orientation of the polarizing optical components. Optimal configurations are then defined as those that allow measuring the Kerr rotation and ellipticity while minimizing nonmagnetic contributions from the diagonal Fresnel coefficients in order to improve the signal-to-noise ratio (SNR). The expressions show that with the PEM, setups based on polarizing beam splitters inherently offer a twofold higher signal than commonly used analyzers, and the experimental results confirm that the SNR is improved by more than 150%. Furthermore, we find that while all proposed detection schemes measure Kerr effects, only those with polarizing beam splitters allow measuring the Kerr rotation directly when no modulator is included. This accommodates, for instance, time-resolved measurements at relatively low laser pulse repetition rates. Ultrafast demagnetization measurements are presented as an example of such applications.

6.
Opt Express ; 30(5): 7968-7975, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299548

ABSTRACT

In this work, we demonstrate the sensitivity of the frequency-resolved optical switching (FROSt) technique to detect a small amount of spectral phase shift for the precise characterization of ultrashort laser pulses. We characterized fs pulses centered at 1.75 µm that are spectrally broadened up to 700 nm of bandwidth in a hollow-core fiber and subsequently compressed down to 2.3 optical cycle duration by propagation in the air at atmospheric pressure. By inserting thin fused silica windows of different thicknesses in the beam path, we accurately retrieve group delay dispersion (GDD) variations as small as 10 fs2. Such GDD variations correspond to a change of the pulse duration of only 0.2 fs for a Fourier transform limited 2-cycle pulse at 1.75 µm (i.e., 11.8 fs). The capability to measure such tiny temporal variations thus demonstrates that the FROSt technique has sufficient sensitivity to precisely characterize single-cycle pulses.

7.
Phys Chem Chem Phys ; 24(3): 1779-1786, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34985091

ABSTRACT

The effect of the incident UV pump wavelength on the subsequent excited state dynamics, electronic relaxation, and ultimate dissociation of formaldehyde is studied using first principles simulation and Coulomb explosion imaging (CEI) experiments. Transitions in a vibronic progression in the à ← X̃ absorption band are systematically prepared using a tunable UV source which generates pulses centered at 304, 314, 329, and 337 nm. We find, both via ab initio simulation and experimental results, that the rate of excited state decay and subsequent dissociation displays a prominent dependence on which vibronic transition in the absorption band is prepared by the pump. Our simulations predict that nonadiabatic transition rates and dissociation yields will increase by a factor of >100 as the pump wavelength is decreased from 337 to 304 nm. The experimental results and theoretical simulations are in broad agreement and both indicate that the dissociation rate plateaus rapidly after ≈2 ps following an ultrafast sub-ps rise.

8.
Opt Express ; 29(15): 23225-23233, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34614590

ABSTRACT

We demonstrate experimentally that the frequency resolved optical switching (FROSt) method is independent of the polarization direction of the pulse to be characterized. In this perspective, it is employed to characterize two or three co-propagating pulses linearly polarized in orthogonal directions, enabling to retrieve simultaneously their temporal intensity and phase profiles together with their group delay. This technique is also applied to track a simple nonlinear process involving different polarization states: type-I second harmonic generation (SHG). We are able to characterize the depleted fundamental pulse along with the generated second-harmonic pulse, thus demonstrating that the FROSt technique is a practical and powerful tool to observe nonlinear processes both in the temporal and spectral domains even if it involves different polarization states.

9.
Opt Express ; 28(24): 35807-35815, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379689

ABSTRACT

The frequency-resolved optical switching (FROSt) method developed for ultrashort pulse characterization is implemented for single-shot measurements. In this basic demonstration, the delay axis of the spectrogram is spatially encoded by the pump beam having a small incident angle with the photoexcited material. We present the calibration procedure for spectrograms acquired in single-shot and the temporal characterization of 44 fs pulses with central wavelength at 800 nm both in scanning and single-shot FROSt configurations. The retrieved pulses are compared by means of the root-mean-square field error. Finally, the pulses are propagated through a known dispersive material to measure the added group-delay dispersion.

10.
Science ; 370(6520): 1072-1077, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33243885

ABSTRACT

Since the discovery of roaming as an alternative molecular dissociation pathway in formaldehyde (H2CO), it has been indirectly observed in numerous molecules. The phenomenon describes a frustrated dissociation with fragments roaming at relatively large interatomic distances rather than following conventional transition-state dissociation; incipient radicals from the parent molecule self-react to form molecular products. Roaming has been identified spectroscopically through static product channel-resolved measurements, but not in real-time observations of the roaming fragment itself. Using time-resolved Coulomb explosion imaging (CEI), we directly imaged individual "roamers" on ultrafast time scales in the prototypical formaldehyde dissociation reaction. Using high-level first-principles simulations of all critical experimental steps, distinctive roaming signatures were identified. These were rendered observable by extracting rare stochastic events out of an overwhelming background using the highly sensitive CEI method.

11.
Sci Rep ; 10(1): 14969, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32917926

ABSTRACT

Nonlinear parametric processes involving ultrashort pulses are typically carried out in time domain, which mathematically corresponds to a convolution of their frequency spectra. In contrast, this spectral convolution changes into a multiplication operation when performing the nonlinear interaction in frequency domain. Here, we extend the scope of frequency-domain nonlinear optics by demonstrating its ability to perform a temporal convolution. Through this approach, nonlinear optical operations that are inaccessible in time domain can be realised: specific optical information can be coherently advanced by picoseconds within a pulse sequence-a newly generated second harmonic pulse carries the amplitude and phase information of two input pulses. This central pulse is isolated when using an input field consisting of two cross-polarized input pulses in combination with type-II second harmonic generation. The effects of nonlinear temporal convolution can be viewed from the aspect of signal processing and pulse shaping, where the nonlinear interaction in the parametric crystal plays the role of a dynamic linear optical filter-in contrast to conventional static filters-with a shaping mask instantaneously adapting to the laser field.

12.
Opt Express ; 28(2): 980-990, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-32121817

ABSTRACT

A conventional hollow core fiber (HCF) scheme is implemented to investigate spectral broadening of Titanium:Sapphire (Ti-Sa) femtosecond laser pulses in saturated hydrocarbon molecules compared to unsaturated ones. While the saturated molecules exhibit a spectral broadening similar to noble gases, for the unsaturated ones with π bonds, broadening towards blue is restrained. Numerical simulations underpin that it is a combination of group velocity dispersion (GVD) and Raman scattering which limits the spectral broadening for the unsaturated molecules. Compression of low energy ∼40fs pulses to ∼8fs using saturated hydrocarbons is demonstrated, suggesting the feasibility of this media for high repetition rate laser pulse compression.

13.
Sci Rep ; 9(1): 16067, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31690731

ABSTRACT

To generalize the applicability of the temporal characterization technique called "tunneling ionization with a perturbation for the time-domain observation of an electric field" (TIPTOE), the technique is examined in the multicycle regime over a broad wavelength range, from the UV to the IR range. The technique is rigorously analyzed first by solving the time-dependent Schrödinger equation. Then, experimental verification is demonstrated over an almost 5-octave wavelength range at 266, 1800, 4000 and 8000 nm by utilizing the same nonlinear medium - air. The experimentally obtained dispersion values of the materials used for the dispersion control show very good agreement with the ones calculated using the material dispersion data and the pulse duration results obtained for 1800 and 4000 nm agree well with the frequency-resolved optical gating measurements. The universality of TIPTOE arises from its phase-matching-free nature and its unprecedented broadband operation range.

14.
Opt Express ; 26(19): 25426-25436, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30469644

ABSTRACT

We introduce hydrofluorocarbon molecules as an alternative medium to noble gases with low ionization potential like krypton or xenon to compress ultrashort pulses of relatively low energy in a conventional hollow core fiber with subsequent dispersion compensation. Spectral broadening of pulses from two different laser systems exceeded those achieved with argon and krypton. Initially 40 fs, 800 nm, 120 µJ pulses were compressed to few optical cycles duration. With the same approach a compression factor of more than 10 was demonstrated for an ytterbium-based laser (1030 nm, 170 fs, 200 µJ) leading to 15.6 fs.

15.
Opt Lett ; 42(18): 3698-3701, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28914936

ABSTRACT

We demonstrate phase-matched difference frequency generation in the emerging nonlinear crystal La3Ga5.5Ta0.5O14. Tunable wavelengths between 1.4 and 4.7 µm are generated by using femtosecond sources. We also report on the measurements of the optical damage threshold in the femtosecond regime and on the nonlinear refractive index n2.

16.
Sci Rep ; 7(1): 7861, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28801622

ABSTRACT

In linear optics, light fields do not mutually interact in a medium. However, they do mix when their field strength becomes comparable to electron binding energies in the so-called nonlinear optical regime. Such high fields are typically achieved with ultra-short laser pulses containing very broad frequency spectra where their amplitudes and phases are mutually coupled in a convolution process. Here, we describe a regime of nonlinear interactions without mixing of different frequencies. We demonstrate both in theory and experiment how frequency domain nonlinear optics overcomes the shortcomings arising from the convolution in conventional time domain interactions. We generate light fields with previously inaccessible properties by avoiding these uncontrolled couplings. Consequently, arbitrary phase functions are transferred linearly to other frequencies while preserving the general shape of the input spectrum. As a powerful application, we introduce deep UV phase control at 207 nm by using a conventional NIR pulse shaper.

17.
Sci Adv ; 1(5): e1400111, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26601188

ABSTRACT

Electric breakdown in air occurs for electric fields exceeding 34 kV/cm and results in a large current surge that propagates along unpredictable trajectories. Guiding such currents across specific paths in a controllable manner could allow protection against lightning strikes and high-voltage capacitor discharges. Such capabilities can be used for delivering charge to specific targets, for electronic jamming, or for applications associated with electric welding and machining. We show that judiciously shaped laser radiation can be effectively used to manipulate the discharge along a complex path and to produce electric discharges that unfold along a predefined trajectory. Remarkably, such laser-induced arcing can even circumvent an object that completely occludes the line of sight.

18.
Opt Lett ; 38(9): 1576-8, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23632557

ABSTRACT

We report an efficient transfer of 800 nm energy into both the ultraviolet and the far infrared (IR) during the filamentation in air of an appropriately shaped laser pulse. The multiorder enhancement of the IR supercontinuum in the 3-5 µm atmospheric transmission windows was achieved thanks to spectral-step cascaded four-wave mixing occurring within the spectrum of the shaped femtosecond laser pulse. These results also point out the limit of the self-phase modulation model to explain the spectral broadening of a filamenting laser pulse.

19.
Phys Rev Lett ; 107(6): 063201, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21902320

ABSTRACT

The process by which a molecule in an intense laser field ionizes more efficiently as its bond length increases towards a critical distance R(c) is known as charge resonance enhanced ionization (CREI). We make a series of measurements of this process for CO(2), by varying pulse duration from 7 to 200 fs, in order to identify the charge states and time scales involved. We find that for the 4+ and higher charge states, 100 fs is the time scale required to reach the critical geometry ≈ 2.1 Å and <θ(OCO)> ≈ 163° (equilibrium CO(2) geometry is ≈ 1.16 Å and <θ(OCO)> ≈ 172°). The CO(2)(3+) molecule, however, appears always to begin dissociation from closer than 1.7 Å indicating that dynamics on charge states lower than 3+ is not sufficient to initiate CREI. Finally, we make quantum ab initio calculations of ionization rates for CO(2) and identify the electronic states responsible for CREI.

20.
Opt Express ; 19(7): 6858-64, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21451713

ABSTRACT

By using the novel approach for pulse compression that combines spectral broadening in hollow-core fiber (HCF) with linear propagation in fused silica (FS), we generate 1.6 cycle 0.24 mJ laser pulses at 1.8 µm wavelength with a repetition rate of 1 kHz. These pulses are obtained with a white light seeded optical parametric amplifier (OPA) and shown to be passively carrier envelope phase (CEP) stable.


Subject(s)
Amplifiers, Electronic , Fiber Optic Technology/instrumentation , Lasers , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...