Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Cancer Immunol Res ; 11(6): 777-791, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37040466

ABSTRACT

High levels of IL1ß can result in chronic inflammation, which in turn can promote tumor growth and metastasis. Inhibition of IL1ß could therefore be a promising therapeutic option in the treatment of cancer. Here, the effects of IL1ß blockade induced by the mAbs canakinumab and gevokizumab were evaluated alone or in combination with docetaxel, anti-programmed cell death protein 1 (anti-PD-1), anti-VEGFα, and anti-TGFß treatment in syngeneic and humanized mouse models of cancers of different origin. Canakinumab and gevokizumab did not show notable efficacy as single-agent therapies; however, IL1ß blockade enhanced the effectiveness of docetaxel and anti-PD-1. Accompanying these effects, blockade of IL1ß alone or in combination induced significant remodeling of the tumor microenvironment (TME), with decreased numbers of immune suppressive cells and increased tumor infiltration by dendritic cells (DC) and effector T cells. Further investigation revealed that cancer-associated fibroblasts (CAF) were the cell type most affected by treatment with canakinumab or gevokizumab in terms of change in gene expression. IL1ß inhibition drove phenotypic changes in CAF populations, particularly those with the ability to influence immune cell recruitment. These results suggest that the observed remodeling of the TME following IL1ß blockade may stem from changes in CAF populations. Overall, the results presented here support the potential use of IL1ß inhibition in cancer treatment. Further exploration in ongoing clinical studies will help identify the best combination partners for different cancer types, cancer stages, and lines of treatment.


Subject(s)
Interleukin-1beta , Neoplasms , Tumor Microenvironment , Animals , Mice , Cell Line, Tumor , Docetaxel/pharmacology , Immunity , Immunotherapy , Neoplasms/drug therapy , Interleukin-1beta/antagonists & inhibitors
3.
PLoS Biol ; 20(1): e3001532, 2022 01.
Article in English | MEDLINE | ID: mdl-35085231

ABSTRACT

Chronic inflammation is often associated with the development of tissue fibrosis, but how mesenchymal cell responses dictate pathological fibrosis versus resolution and healing remains unclear. Defining stromal heterogeneity and identifying molecular circuits driving extracellular matrix deposition and remodeling stands to illuminate the relationship between inflammation, fibrosis, and healing. We performed single-cell RNA-sequencing of colon-derived stromal cells and identified distinct classes of fibroblasts with gene signatures that are differentially regulated by chronic inflammation, including IL-11-producing inflammatory fibroblasts. We further identify a transcriptional program associated with trans-differentiation of mucosa-associated fibroblasts and define a functional gene signature associated with matrix deposition and remodeling in the inflamed colon. Our analysis supports a critical role for the metalloprotease Adamdec1 at the interface between tissue remodeling and healing during colitis, demonstrating its requirement for colon epithelial integrity. These findings provide mechanistic insight into how inflammation perturbs stromal cell behaviors to drive fibroblastic responses controlling mucosal matrix remodeling and healing.


Subject(s)
ADAM Proteins/immunology , Colitis/immunology , Extracellular Matrix/metabolism , Fibroblasts/immunology , Intestinal Mucosa/immunology , Mesenchymal Stem Cells/immunology , ADAM Proteins/deficiency , ADAM Proteins/genetics , Animals , Cell Differentiation , Colitis/chemically induced , Colitis/genetics , Colitis/pathology , Colon/immunology , Colon/pathology , Extracellular Matrix/immunology , Fibroblasts/pathology , Fibrosis , Gene Expression Regulation , Humans , Inflammation , Interleukin-11/genetics , Interleukin-11/immunology , Intestinal Mucosa/pathology , Male , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Single-Cell Analysis , Sodium Dodecyl Sulfate/administration & dosage , Transcription, Genetic , Transcriptome , Wound Healing/genetics , Wound Healing/immunology
4.
Sci Rep ; 11(1): 1399, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446805

ABSTRACT

SHP2 is a ubiquitous tyrosine phosphatase involved in regulating both tumor and immune cell signaling. In this study, we discovered a novel immune modulatory function of SHP2. Targeting this protein with allosteric SHP2 inhibitors promoted anti-tumor immunity, including enhancing T cell cytotoxic function and immune-mediated tumor regression. Knockout of SHP2 using CRISPR/Cas9 gene editing showed that targeting SHP2 in cancer cells contributes to this immune response. Inhibition of SHP2 activity augmented tumor intrinsic IFNγ signaling resulting in enhanced chemoattractant cytokine release and cytotoxic T cell recruitment, as well as increased expression of MHC Class I and PD-L1 on the cancer cell surface. Furthermore, SHP2 inhibition diminished the differentiation and inhibitory function of immune suppressive myeloid cells in the tumor microenvironment. SHP2 inhibition enhanced responses to anti-PD-1 blockade in syngeneic mouse models. Overall, our study reveals novel functions of SHP2 in tumor immunity and proposes that targeting SHP2 is a promising strategy for cancer immunotherapy.


Subject(s)
Immunity, Cellular , Neoplasm Proteins/immunology , Neoplasms, Experimental/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Animals , Cell Line, Tumor , Gene Knockout Techniques , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Neoplasm Proteins/genetics , Neoplasms, Experimental/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Signal Transduction/genetics
5.
Nat Commun ; 11(1): 6315, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33298926

ABSTRACT

Despite the increasing interest in targeting stromal elements of the tumor microenvironment, we still face tremendous challenges in developing adequate therapeutics to modify the tumor stromal landscape. A major obstacle to this is our poor understanding of the phenotypic and functional heterogeneity of stromal cells in tumors. Herein, we perform an unbiased interrogation of tumor mesenchymal cells, delineating the co-existence of distinct subsets of cancer-associated fibroblasts (CAFs) in the microenvironment of murine carcinomas, each endowed with unique phenotypic features and functions. Furthermore, our study shows that neutralization of TGFß in vivo leads to remodeling of CAF dynamics, greatly reducing the frequency and activity of the myofibroblast subset, while promoting the formation of a fibroblast population characterized by strong response to interferon and heightened immunomodulatory properties. These changes correlate with the development of productive anti-tumor immunity and greater efficacy of PD1 immunotherapy. Along with providing the scientific rationale for the evaluation of TGFß and PD1 co-blockade in the clinical setting, this study also supports the concept of plasticity of the stromal cell landscape in tumors, laying the foundation for future investigations aimed at defining pathways and molecules to program CAF composition for cancer therapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cancer-Associated Fibroblasts/immunology , Carcinoma/drug therapy , Interferon-beta/immunology , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cancer-Associated Fibroblasts/drug effects , Carcinoma/immunology , Carcinoma/pathology , Cell Line, Tumor/transplantation , Cell Plasticity/drug effects , Cell Plasticity/immunology , Disease Models, Animal , Drug Synergism , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Stromal Cells/drug effects , Stromal Cells/immunology , Transforming Growth Factor beta/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
6.
Nat Cell Biol ; 21(7): 879-888, 2019 07.
Article in English | MEDLINE | ID: mdl-31263265

ABSTRACT

Most human tumours are heterogeneous, composed of cellular clones with different properties present at variable frequencies. Highly heterogeneous tumours have poor clinical outcomes, yet the underlying mechanism remains poorly understood. Here, we show that minor subclones of breast cancer cells expressing IL11 and FIGF (VEGFD) cooperate to promote metastatic progression and generate polyclonal metastases composed of driver and neutral subclones. Expression profiling of the epithelial and stromal compartments of monoclonal and polyclonal primary and metastatic lesions revealed that this cooperation is indirect, mediated through the local and systemic microenvironments. We identified neutrophils as a leukocyte population stimulated by the IL11-expressing minor subclone and showed that the depletion of neutrophils prevents metastatic outgrowth. Single-cell RNA-seq of CD45+ cell populations from primary tumours, blood and lungs demonstrated that IL11 acts on bone-marrow-derived mesenchymal stromal cells, which induce pro-tumorigenic and pro-metastatic neutrophils. Our results indicate key roles for non-cell-autonomous drivers and minor subclones in metastasis.


Subject(s)
Breast Neoplasms/pathology , Lung Neoplasms/pathology , Neoplasm Metastasis/pathology , Neutrophils/metabolism , Tumor Microenvironment , Animals , Carcinogenesis/metabolism , Disease Progression , Humans , Lung/pathology , Lung Neoplasms/secondary , Mesenchymal Stem Cells/cytology
7.
Cancer Discov ; 9(9): 1208-1227, 2019 09.
Article in English | MEDLINE | ID: mdl-31217296

ABSTRACT

Immune checkpoint blockade (ICB) therapy, which targets T cell-inhibitory receptors, has revolutionized cancer treatment. Among the breast cancer subtypes, evaluation of ICB has been of greatest interest in triple-negative breast cancer (TNBC) due to its immunogenicity, as evidenced by the presence of tumor-infiltrating lymphocytes and elevated PD-L1 expression relative to other subtypes. TNBC incidence is equally distributed across the age spectrum, affecting 10% to 15% of women in all age groups. Here we report that increased immune dysfunction with age limits ICB efficacy in aged TNBC-bearing mice. The tumor microenvironment in both aged mice and patients with TNBC shows decreased IFN signaling and antigen presentation, suggesting failed innate immune activation with age. Triggering innate immune priming with a STING agonist restored response to ICB in aged mice. Our data implicate age-related immune dysfunction as a mechanism of ICB resistance in mice and suggest potential prognostic utility of assessing IFN-related genes in patients with TNBC receiving ICB therapy. SIGNIFICANCE: These data demonstrate for the first time that age determines the T cell-inflamed phenotype in TNBC and affects response to ICB in mice. Evaluating IFN-related genes from tumor genomic data may aid identification of patients for whom combination therapy including an IFN pathway activator with ICB may be required.This article is highlighted in the In This Issue feature, p. 1143.


Subject(s)
Antineoplastic Agents, Immunological/administration & dosage , Interferon-gamma/administration & dosage , Interferons/metabolism , Triple Negative Breast Neoplasms/drug therapy , Xanthones/administration & dosage , Age Factors , Animals , Antigen Presentation , Antineoplastic Agents, Immunological/pharmacology , B7-H1 Antigen/antagonists & inhibitors , CTLA-4 Antigen/antagonists & inhibitors , Cell Line, Tumor , Female , Humans , Interferon-gamma/pharmacology , Mice , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment , Xanthones/pharmacology , Xenograft Model Antitumor Assays
8.
Cancer Immunol Res ; 6(12): 1472-1485, 2018 12.
Article in English | MEDLINE | ID: mdl-30266714

ABSTRACT

Cancer-associated fibroblasts (CAFs) are generally associated with poor clinical outcome. CAFs support tumor growth in a variety of ways and can suppress antitumor immunity and response to immunotherapy. However, a precise understanding of CAF contributions to tumor growth and therapeutic response is lacking. Discrepancies in this field of study may stem from heterogeneity in the composition and function of fibroblasts in the tumor microenvironment. Furthermore, it remains unclear whether CAFs directly interact with and suppress T cells. Here, mouse and human breast tumors were used to examine stromal cells expressing fibroblast activation protein (FAP), a surface marker for CAFs. Two discrete populations of FAP+ mesenchymal cells were identified on the basis of podoplanin (PDPN) expression: a FAP+PDPN+ population of CAFs and a FAP+PDPN- population of cancer-associated pericytes (CAPs). Although both subsets expressed extracellular matrix molecules, the CAF transcriptome was enriched in genes associated with TGFß signaling and fibrosis compared with CAPs. In addition, CAFs were enriched at the outer edge of the tumor, in close contact with T cells, whereas CAPs were localized around vessels. Finally, FAP+PDPN+ CAFs suppressed the proliferation of T cells in a nitric oxide-dependent manner, whereas FAP+PDPN- pericytes were not immunosuppressive. Collectively, these findings demonstrate that breast tumors contain multiple populations of FAP-expressing stromal cells of dichotomous function, phenotype, and location.


Subject(s)
Breast Neoplasms/pathology , Gelatinases/metabolism , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism , Stromal Cells/metabolism , Tumor Microenvironment/immunology , Animals , Breast Neoplasms/immunology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Proliferation , Endopeptidases , Female , Gene Expression Regulation , Humans , Membrane Glycoproteins/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Nitric Oxide/metabolism , Pericytes/metabolism , Pericytes/pathology , Stromal Cells/pathology , T-Lymphocytes/pathology
9.
Nat Cell Biol ; 20(9): 1084-1097, 2018 09.
Article in English | MEDLINE | ID: mdl-30154549

ABSTRACT

Lack of insight into mechanisms governing breast cancer metastasis has precluded the development of curative therapies. Metastasis-initiating cancer cells (MICs) are uniquely equipped to establish metastases, causing recurrence and therapeutic resistance. Using various metastasis models, we discovered that certain primary tumours elicit a systemic inflammatory response involving interleukin-1ß (IL-1ß)-expressing innate immune cells that infiltrate distant MIC microenvironments. At the metastatic site, IL-1ß maintains MICs in a ZEB1-positive differentiation state, preventing MICs from generating highly proliferative E-cadherin-positive progeny. Thus, when the inherent plasticity of MICs is impeded, overt metastases cannot be established. Ablation of the pro-inflammatory response or inhibition of the IL-1 receptor relieves the differentiation block and results in metastatic colonization. Among patients with lymph node-positive breast cancer, high primary tumour IL-1ß expression is associated with better overall survival and distant metastasis-free survival. Our data reveal complex interactions that occur between primary tumours and disseminated MICs that could be exploited to improve patient survival.


Subject(s)
Breast Neoplasms/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , Lung Neoplasms/metabolism , Myeloid Cells/metabolism , Tumor Microenvironment , Animals , Anti-Inflammatory Agents/pharmacology , Antigens, CD/genetics , Antigens, CD/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cadherins/genetics , Cadherins/metabolism , Cell Communication , Cell Differentiation , Cell Line, Tumor , Cell Plasticity , Cell Proliferation , Female , Humans , Inflammation/immunology , Inflammation/pathology , Inflammation/prevention & control , Interleukin-1beta/genetics , Interleukin-1beta/pharmacology , Lung Neoplasms/immunology , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Lymphatic Metastasis , Mice, Nude , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/pathology , Signal Transduction , Time Factors , Xenograft Model Antitumor Assays , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
10.
PLoS One ; 13(6): e0198790, 2018.
Article in English | MEDLINE | ID: mdl-29897959

ABSTRACT

Gene editing protocols often require the use of a subcloning step to isolate successfully edited cells, the behavior of which is then compared to the aggregate parental population and/or other non-edited subclones. Here we demonstrate that the inherent functional heterogeneity present in many cell lines can render these populations inappropriate controls, resulting in erroneous interpretations of experimental findings. We describe a novel CRISPR/Cas9 protocol that incorporates a single-cell cloning step prior to gene editing, allowing for the generation of appropriately matched, functionally equivalent control and edited cell lines. As a proof of concept, we generated matched control and osteopontin-knockout Her2+ and Estrogen receptor-negative murine mammary carcinoma cell lines and demonstrated that the osteopontin-knockout cell lines exhibit the expected biological phenotypes, including unaffected primary tumor growth kinetics and reduced metastatic outgrowth in female FVB mice. Using these matched cell lines, we discovered that osteopontin-knockout mammary tumors were more sensitive than control tumors to chemotherapy in vivo. Our results demonstrate that heterogeneity must be considered during experimental design when utilizing gene editing protocols and provide a solution to account for it.


Subject(s)
Antineoplastic Agents/therapeutic use , CRISPR-Cas Systems/genetics , Neoplasms/drug therapy , Animals , Cell Line, Tumor , Disease Progression , Gene Editing , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis , Neoplasms/genetics , Neoplasms/pathology , Osteopontin/analysis , Osteopontin/deficiency , Osteopontin/genetics , Phenotype , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Transplantation, Heterologous
11.
Cancer Res ; 77(3): 790-801, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27940576

ABSTRACT

Despite the high incidence of oncogenic mutations in PIK3CA, the gene encoding the catalytic subunit of PI3K, PI3K inhibitors have yielded little clinical benefit for breast cancer patients. Recent epidemiologic studies have suggested a therapeutic benefit from aspirin intake in cancers harboring oncogenic PIK3CA Here, we show that mutant PIK3CA-expressing breast cancer cells have greater sensitivity to aspirin-mediated growth suppression than their wild-type counterparts. Aspirin decreased viability and anchorage-independent growth of mutant PIK3CA breast cancer cells independently of its effects on COX-2 and NF-κB. We ascribed the effects of aspirin to AMP-activated protein kinase (AMPK) activation, mTORC1 inhibition, and autophagy induction. In vivo, oncogenic PIK3CA-driven mouse mammary tumors treated daily with aspirin resulted in decreased tumor growth kinetics, whereas combination therapy of aspirin and a PI3K inhibitor further attenuated tumor growth. Our study supports the evaluation of aspirin and PI3K pathway inhibitors as a combination therapy for targeting breast cancer. Cancer Res; 77(3); 790-801. ©2016 AACR.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aspirin/pharmacology , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Female , Gene Knockdown Techniques , Humans , Immunoblotting , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Inbred NOD , Mice, Transgenic , Multiprotein Complexes/metabolism , Phosphatidylinositol 3-Kinases/genetics , Polymerase Chain Reaction , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...