Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Spine J ; 21(5): 855-864, 2021 05.
Article in English | MEDLINE | ID: mdl-33493681

ABSTRACT

BACKGROUND CONTEXT: Adult spinal deformity patients treated operatively by long-segment instrumented spinal fusion are prone to develop proximal junctional kyphosis (PJK) and failure (PJF). A gradual transition in range of motion (ROM) at the proximal end of spinal instrumentation may reduce the incidence of PJK and PJF, however, previously evaluated techniques have not directly been compared. PURPOSE: To determine the biomechanical characteristics of five different posterior spinal instrumentation techniques to achieve semirigid junctional fixation, or "topping-off," between the rigid pedicle screw fixation (PSF) and the proximal uninstrumented spine. STUDY DESIGN: Biomechanical cadaveric study. METHODS: Seven fresh-frozen human cadaveric spine segments (T8-L3) were subjected to ex vivo pure moment loading in flexion-extension, lateral bending and axial rotation up to 5 Nm. The native condition, three-level PSF (T11-L2), PSF with supplemental transverse process hooks at T10 (TPH), and two sublaminar taping techniques (knotted and clamped) as one- (T10) or two-level (T9, T10) semirigid junctional fixation techniques were compared. The ROM and neutral zone (NZ) of the segments were normalized to the native condition. The linearity of the transition zones over three or four segments was determined through linear regression analysis. RESULTS: All techniques achieved a significantly reduced ROM at T10-T11 in flexion-extension and axial rotation relative to the PSF condition. Additionally, both two-level sublaminar taping techniques (CT2, KT2) had a significantly reduced ROM at T9-T10. One-level clamped sublaminar tape (CT1) had a significantly lower ROM and NZ compared with one-level knotted sublaminar tape (KT1) at T10-T11. Linear regression analysis showed the highest linear correlation between ROM and vertebral level for TPH and the lowest linear correlation for CT2. CONCLUSIONS: All studied semirigid junctional fixation techniques significantly reduced the ROM at the junctional levels and thus provide a more gradual transition than pedicle screws. TPH achieves the most linear transition over three vertebrae, whereas KT2 achieves that over four vertebrae. In contrast, CT2 effectively is a one-level semirigid junctional fixation technique with a shift in the upper rigid fixation level. Clamped sublaminar tape reduces the NZ greatly, whereas knotted sublaminar tape and TPH maintain a more physiologic NZ. Clinical validation is ultimately required to translate the biomechanics of various semirigid junctional fixation techniques into the clinical goal of reducing the incidence of proximal junctional kyphosis and failure. CLINICAL SIGNIFICANCE: The direct biomechanical comparison of multiple instrumentation techniques that aim to reduce the incidence of PJK after thoracolumbar spinal fusion surgery provides a basis upon which clinical studies could be designed. Furthermore, the data provided in this study can be used to further analyze the biomechanical effects of the studied techniques using finite element models to better predict their post-operative effectiveness.


Subject(s)
Kyphosis , Pedicle Screws , Spinal Fusion , Adult , Humans , Lumbar Vertebrae/surgery , Range of Motion, Articular , Spinal Fusion/adverse effects
2.
J Neurosurg Spine ; 34(2): 236-244, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33126215

ABSTRACT

OBJECTIVE: Complications after adult spinal deformity surgery are common, with implant-related complications occurring in up to 27.8% of cases. Sublaminar wire fixation strength is less affected by decreasing trabecular bone density in comparison to pedicle screw (PS) fixation due to the predominant cortical bone composition of the lamina. Sublaminar fixation may thus aid in decreasing implant-related complications. The goal of this study was to compare fixation characteristics of titanium sublaminar cables (SCs), ultra-high-molecular-weight polyethylene (UHMWPE) tape, PSs, and PSs augmented with UHMWPE tape in an ex vivo flexion-bending setup. METHODS: Thirty-six human cadaver vertebrae were stratified into 4 different fixation groups: UHMWPE sublaminar tape (ST), PS, metal SC, and PS augmented with ST (PS + ST). Individual vertebrae were embedded in resin, and a flexion-bending moment was applied that closely resembles the in vivo loading pattern at transitional levels of spinal instrumentation. RESULTS: The failure strength of PS + ST (4522 ± 2314 N) was significantly higher compared to the SC (2931 ± 751 N) and PS (2678 ± 827 N) groups, which had p values of 0.028 and 0.015, respectively (all values expressed as the mean ± SD). Construct stiffness was significantly higher for the PS groups compared to the stand-alone sublaminar wiring groups (p = 0.020). In contrast to SC, ST did not show any case of cortical breach. CONCLUSIONS: The higher failure strength of PS + ST compared to PS indicates that PS augmentation with ST may be an effective measure to reduce the incidence of screw pullout, even in osteoporotic vertebrae. Moreover, the lower stiffness of sublaminar fixation techniques and the absence of damage to the cortices in the ST group suggest that ST as a stand-alone fixation technique in adult spinal deformity surgery may also be clinically feasible and offer clinical benefits.

3.
Reg Anesth Pain Med ; 35(4): 364-9, 2010.
Article in English | MEDLINE | ID: mdl-20607879

ABSTRACT

BACKGROUND AND OBJECTIVES: The goal of this study was to investigate,with magnetic resonance imaging, the human anatomic positions of the spinal canal (eg, spinal cord, thecal tissue) in various postures and identify possible implications from different patient positioning for neuraxial anesthetic practice. METHOD: Nine volunteers underwent magnetic resonance imaging in supine, laterally recumbent, and sitting (head-down) positions. Axial and sagittal slices of the thoracic and lumbar spine were measured for the relative distances between anatomic structures, including dura mater and spinal cord. RESULTS: The posterior dura-spinal cord (midline) distance is on average greater than the anterior dura-spinal cord (midline) distance along the thoracic spinal column, irrespective of volunteer postures (P G 0.05).The separation of the dura mater and spinal cord is greatest posterior in the middle thoracic region compared with upper and lower thoracic levels for all postures of the volunteers (P G 0.05). By placing the patient in a head-down sitting posture (as commonly done in epidural and spinal anesthesia), the posterior separation of the dura mater and spinal cordis increased. CONCLUSIONS: The spinal cord follows the straightest line through the imposed geometry of the spinal canal. Accordingly, there is relatively more posterior separation of the cord and surrounding thecal tissue at midthoracic levels in the apex of the thoracic kyphosis. Placing a patient in a position that accentuates the thoracic curvature of the spine (ie,sitting head-down) increases the posterior separation of the spinal cord and dural sheath at thoracic levels.


Subject(s)
Magnetic Resonance Imaging , Patient Positioning , Posture , Spinal Canal/anatomy & histology , Adult , Dura Mater/anatomy & histology , Female , Humans , Male , Spinal Cord/anatomy & histology , Thoracic Vertebrae , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...