Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 11(11)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36422632

ABSTRACT

Yersinia ruckeri is an important fish pathogen causing enteric redmouth disease. Antibiotics have traditionally been used to control this pathogen, but concerns of antibiotic resistance have created a need for alternative interventions. Presently, chlorate and certain nitrocompounds were tested against Y. ruckeri as well as a related species within the genus, Y. aleksiciae, to assess the effects of these inhibitors. The results reveal that 9 mM chlorate had no inhibitory effect against Y. ruckeri, but inhibited growth rates and maximum optical densities of Y. aleksciciae by 20-25% from those of untreated controls (0.46 h-1 and 0.29 maximum optical density, respectively). The results further reveal that 2-nitropropanol and 2-nitroethanol (9 mM) eliminated the growth of both Y. ruckeri and Y. aleksiciae during anaerobic or aerobic culture. Nitroethane, ethyl nitroacetate and ethyl-2-nitropropionate (9 mM) were less inhibitory when tested similarly. Results from a mixed culture of Y. ruckeri with fish tank microbes and of Y. aleksiciae with porcine fecal microbes reveal that the anti-Yersinia activity of the tested nitrocompounds was bactericidal, with 2-nitropropanol and 2-nitroethanol being more potent than the other tested nitrocompounds. The anti-Yersinia activity observed with these tested compounds warrants further study to elucidate the mechanisms of action and strategies for their practical application.

2.
Bioresour Technol ; 310: 123459, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32389429

ABSTRACT

Poultry litter is a potentially valuable crude protein feedstuff for ruminants but must be treated to kill pathogens before being fed. Composting kills pathogens but risks losses of nitrogen due to volatilization or leaching as ammonia. Treatment of poultry litter with ethyl nitroacetate, 3-nitro-1-propionate, ethyl 2-nitropropionate (at 27 µmol/g), decreased numbers of experimentally-inoculated Salmonella Typhimurium (>1.0 log10 compared to controls, 4.2 ± 0.2 log10 CFU/g) but not endogenous Escherichia coli early during simulated composting. By day 9 of simulated composting, Salmonella and E. coli were decreased to non-detectable levels regardless of treatment. Some nitro-treatments preserved uric acid and prevented ammonia accumulation, with 18% more uric acid remaining and 17-24% less ammonia accumulating in some nitro-treated litter than in untreated litter (18.1 ± 3.8 µmol/g and 3.4 ± 1.4 µmol/g, respectively). Results indicate that nitro-treatment may help preserve uric acid in composted litter while aiding Salmonella control.


Subject(s)
Composting , Animals , Escherichia coli , Manure , Nitrogen , Poultry , Salmonella
3.
J Anim Sci ; 98(3)2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32064520

ABSTRACT

The influence of sodium chlorate (SC), ferulic acid (FA), and essential oils (EO) was examined on the survivability of two porcine diarrhetic enterotoxigenic Escherichia coli (ETEC) strains (F18 and K88) and populations of porcine fecal bacteria. Fecal bacterial populations were examined by denaturing gradient gel electrophoresis (DGGE) and identification by 16S gene sequencing. The treatments were control (no additives), 10 mM SC, 2.5 mg FA /mL, a 1.5% vol/vol solution of an EO mixture as well as mixtures of EO + SC, EO + FA, and FA + SC at each of the aforementioned concentrations. EO were a commercial blend of oregano oil and cinnamon oil with water and citric acid. Freshly collected porcine feces in half-strength Mueller Hinton broth was inoculated with E. coli F18 (Trial 1) or E. coli K88 (Trial 2). The fecal-E. coli suspensions were transferred to crimp top tubes preloaded with the treatment compounds. Quantitative enumeration was at 0, 6, and 24 h. All treatments reduced (P < 0.05) the counts of E. coli F18 at 6 and 24 h. With the exception of similarity coefficient (%SC), all the other treatments reduced (P < 0.05) the K88 counts at 24 h. The most effective treatments to reduce the F18 and K88 CFU numbers were those containing EO. Results of DGGE revealed that Dice percentage similarity coefficients (%SC) of bacterial profiles among treatment groups varied from 81.3% to 100%SC. The results of gene sequencing showed that, except for SC at 24 h, all the other treatments reduced the counts of the family Enterobacteriaceae, while Lactobacillaceae and Ruminococcaceae increased and Clostridiaceae decreased in all treatments. In conclusion, all treatments were effective in reducing the ETEC, but EO mixture was the most effective. The porcine microbial communities may be influenced by the studied treatments.


Subject(s)
Bacteria/drug effects , Chlorates/pharmacology , Coumaric Acids/pharmacology , Feces/microbiology , Oils, Volatile/pharmacology , Swine , Animals , Bacteria/classification , Cinnamomum zeylanicum , Microbiota , Origanum , Plant Oils/pharmacology
4.
Sci Total Environ ; 671: 324-328, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-30933788

ABSTRACT

The effects of supplemental nitrate administered alone or with a denitrifying ruminal bacterium, designated Paenibacillus 79R4 (79R4) intentionally selected for enhanced nitrate- and nitrite-metabolizing ability, on select rumen fermentation characteristics was examined in vivo. Rumen and blood samples were collected from cannulated Holstein steers one day prior to and one day after initiation of treatments applied as three consecutive intra-ruminal administrations of nitrate, to achieve the equivalent of 83 mg sodium nitrate/kg body weight day, given alone or with the nitrite-selected 79R4 (provided to achieve 106 cells/mL rumen fluid). Results revealed a day effect on methane-producing activity, with rates of methane production by ruminal microbes being more rapid when collected one day before than one day after initiation of treatments. Nitrate-metabolizing activity of the rumen microbes was unaffected by day, treatment or their interaction. A day by treatment interaction was observed on nitrite-metabolizing activity, with rates of nitrite metabolism by rumen microbes being most rapid in populations collected one day after initiation of treatment from steers treated with nitrate plus 79R4. A day by treatment interaction was also observed on plasma methemoglobin concentrations, with concentrations being lower from steers one day after initiation of treatments than from collected one day prior to treatment initiation and concentrations being lowest in steers treated with nitrate plus 79R4. A major effect of treatment was observed on accumulations of most prominent and branched chain volatile fatty acids produced and amounts of hexose fermented in the rumen of animals administered nitrate, with concentrations being decreased in steers administered nitrate alone when compared to steers treated with nitrate plus the 79R4. These results demonstrate that the nitrite-selected Paenibacillus 79R4 may help prevent nitrite toxicity in nitrate-treated ruminants while maintaining benefits of reduced methane emissions and preventing inhibition of fermentation efficiency by the microbial ecosystem.


Subject(s)
Methane/metabolism , Nitrates/metabolism , Nitrites/metabolism , Paenibacillus/chemistry , Probiotics/pharmacology , Rumen/physiology , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Fermentation , Inactivation, Metabolic , Male , Probiotics/chemistry , Rumen/microbiology
5.
Bioresour Technol ; 263: 358-364, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29758485

ABSTRACT

The effects of dietary nitrate and Paenibacillus 79R4 (79R4), a denitrifying bacterium, when co-administered as a probiotic, on methane emissions, nitrate and nitrite-metabolizing capacity and fermentation characteristics were studied in vitro. Mixed populations of rumen microbes inoculated with 79R4 metabolized all levels of nitrite studied after 24 h in vitro incubation. Results from in vitro simulations resulted in up to 2 log10 colony forming unit reductions in E. coli O157:H7 and Campylobacter jejuni when these were co-cultured with 79R4. Nitrogen gas was the predominant final product of nitrite reduction by 79R4. When tested with nitrate-treated incubations of rumen microbes, 79R4 inoculation (provided to achieve 106 cells/mL rumen fluid volume) complemented the ruminal methane-decreasing potential of nitrate (P < 0.05) while concurrently increasing fermentation efficiency and enhancing ruminal nitrate and nitrite-metabolizing activity (P < 0.05) compared to untreated and nitrate only-treated incubations.


Subject(s)
Food Safety , Methane , Paenibacillus , Probiotics , Animals , Escherichia coli , Fermentation , Nitrites , Rumen
6.
Front Microbiol ; 7: 228, 2016.
Article in English | MEDLINE | ID: mdl-26973609

ABSTRACT

Nitrate and certain short chain nitrocompounds and nitro-oxy compounds are being investigated as dietary supplements to reduce economic and environmental costs associated with ruminal methane emissions. Thermodynamically, nitrate is a preferred electron acceptor in the rumen that consumes electrons at the expense of methanogenesis during dissimilatory reduction to an intermediate, nitrite, which is primarily reduced to ammonia although small quantities of nitrous oxide may also be produced. Short chain nitrocompounds act as direct inhibitors of methanogenic bacteria although certain of these compounds may also consume electrons at the expense of methanogenesis and are effective inhibitors of important foodborne pathogens. Microbial and nutritional consequences of incorporating nitrate into ruminant diets typically results in increased acetate production. Unlike most other methane-inhibiting supplements, nitrate decreases or has no effect on propionate production. The type of nitrate salt added influences rates of nitrate reduction, rates of nitrite accumulation and efficacy of methane reduction, with sodium and potassium salts being more potent than calcium nitrate salts. Digestive consequences of adding nitrocompounds to ruminant diets are more variable and may in some cases increase propionate production. Concerns about the toxicity of nitrate's intermediate product, nitrite, to ruminants necessitate management, as animal poisoning may occur via methemoglobinemia. Certain of the naturally occurring nitrocompounds, such as 3-nitro-1-propionate or 3-nitro-1-propanol also cause poisoning but via inhibition of succinate dehydrogenase. Typical risk management procedures to avoid nitrite toxicity involve gradually adapting the animals to higher concentrations of nitrate and nitrite, which could possibly be used with the nitrocompounds as well. A number of organisms responsible for nitrate metabolism in the rumen have been characterized. To date a single rumen bacterium is identified as contributing appreciably to nitrocompound metabolism. Appropriate doses of the nitrocompounds and nitrate, singly or in combination with probiotic bacteria selected for nitrite and nitrocompound detoxification activity promise to alleviate risks of toxicity. Further studies are needed to more clearly define benefits and risk of these technologies to make them saleable for livestock producers.

7.
Anaerobe ; 26: 7-13, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24374155

ABSTRACT

The nitrotoxins 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) are produced by a wide variety of leguminous plants, including over 150 different species and varieties of Astragalus potentially grazed by livestock. These toxins are known to be detoxified by at least one ruminal bacterium but detoxification by bacteria from other gut habitats is not known. In the present study, mixed populations of bovine ruminal and equine cecal microbes were enriched for NPA-metabolizing bacteria via consecutive 24-72 h culture in a basal minimal rumen fluid-based medium supplemented with 4.2 mM NPA and H2 as the energy source. Rates of NPA metabolism by the respective populations increased from 58.4 ± 4.8 and 8.6 ± 11.6 nmol NPA/mL per h during initial culture to 88.9 ± 30.6 and 50.2 ± 30.9 nmol NPA/mL per h following enrichment. Results from 3-tube most probable number tests indicated that numbers of NPA-degrading microbes increased 2.1 and 1.8 log10 units during enrichment from numbers measured pre-enrichment (3.9 × 10³ and 4.3 × 10¹ cells/mL for ruminal and equine cecal populations, respectively). Hydrogen, formate, and to a lesser extent, DL-lactic acid, served as electron donors to the enriched populations and CO2 or formate were needed to maintain high rates of NPA-metabolism. The NPA-enriched populations were able to metabolize nitrate which, being a preferred electron acceptor, was antagonistic to NPA metabolism. Supplemental NPA was inhibitory to methanogenesis. Fermentation balance estimates indicated that only 47.6% of carbon available in potential substrates was recovered in headspace CO2, volatile fatty acids or unmetabolized NPA after 72 h incubation of NPA-enriched populations that had metabolized 98% of 8.4 mM added NPA. Overall, these results reveal low level carriage of NPA-metabolizing, CO2 or formate-requiring bacterial populations in the equine cecum yet support the concept that Denitrobacterium detoxificans-like organisms may well be the functional agents of NPA and NPOH detoxification in the populations studied here.


Subject(s)
Bacteria/isolation & purification , Bacteria/metabolism , Cecum/microbiology , Nitro Compounds/metabolism , Propanols/metabolism , Propionates/metabolism , Rumen/microbiology , Animals , Biotransformation , Carbon Dioxide/metabolism , Cattle , Formates/metabolism , Horses , Hydrogen/metabolism , Lactic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...