Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Nature ; 584(7821): 479-483, 2020 08.
Article in English | MEDLINE | ID: mdl-32788728

ABSTRACT

Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipin transporter6-9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10-12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery.


Subject(s)
Cell Membrane/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/chemistry , Escherichia coli/pathogenicity , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Amino Acid Motifs , Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane/metabolism , Binding Sites , Cell Membrane/metabolism , Enzyme Stability , Escherichia coli/cytology , Escherichia coli/drug effects , Genes, Essential , Hydrolases/chemistry , Hydrolases/metabolism , Lipid A/chemistry , Lipid A/metabolism , Lipopolysaccharides/biosynthesis , Microbial Sensitivity Tests , Microbial Viability/drug effects , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Periplasm/chemistry , Periplasm/metabolism , Protein Binding , Virulence
2.
Drug Metab Dispos ; 48(5): 408-419, 2020 05.
Article in English | MEDLINE | ID: mdl-32132091

ABSTRACT

The objectives of the present study were to characterize GNE-947 for its phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitory activities, in vitro anti-cell migration activity in human umbilical vein endothelial cells (HUVECs), in vivo antineovascularization activity in laser-induced rat choroidal neovascular (CNV) eyes, pharmacokinetics in rabbit plasma and eyes, and ocular distribution using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) and autoradioluminography. Its PI3K and mTOR K i were 0.0005 and 0.045 µM, respectively, and its HUVEC IC50 was 0.093 µM. GNE-947 prevented neovascularization in the rat CNV model at 50 or 100 µg per eye with repeat dosing. After a single intravenous injection at 2.5 and 500 µg/kg in rabbits, its plasma terminal half-lives (t 1/2) were 9.11 and 9.59 hours, respectively. After a single intravitreal injection of a solution at 2.5 µg per eye in rabbits, its apparent t 1/2 values were 14.4, 16.3, and 23.2 hours in the plasma, vitreous humor, and aqueous humor, respectively. After a single intravitreal injection of a suspension at 33.5, 100, 200 µg per eye in rabbits, the t 1/2 were 29, 74, and 219 days in the plasma and 46, 143, and 191 days in the eyes, respectively. MALDI-IMS and autoradioluminography images show that GNE-947 did not homogenously distribute in the vitreous humor and aggregated at the injection sites after injection of the suspension, which was responsible for the long t 1/2 of the suspension because of the slow dissolution process. This hypothesis was supported by pharmacokinetic modeling analyses. In conclusion, the PI3K/mTOR inhibitor GNE-947 prevented neovascularization in a rat CNV model, with t 1/2 up to approximately 6 months after a single intravitreal injection of the suspension in rabbit eyes. SIGNIFICANCE STATEMENT: GNE-947 is a potent phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor and exhibits anti-choroidal neovascular activity in rat eyes. The duration of GNE-947 in the rabbit eyes after intravitreal injection in a solution is short, with a half-life (t 1/2) of less than a day. However, the duration after intravitreal dose of a suspension is long, with t 1/2 up to 6 months due to low solubility and slow dissolution. These results indicate that intravitreal injection of a suspension for low-solubility drugs can be used to achieve long-term drug exposure.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Choroidal Neovascularization/drug therapy , Phosphoinositide-3 Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/therapeutic use , Animals , Choroidal Neovascularization/etiology , Choroidal Neovascularization/pathology , Disease Models, Animal , Half-Life , Human Umbilical Vein Endothelial Cells , Humans , Injections, Intravenous , Intravitreal Injections , Male , Models, Biological , Ophthalmic Solutions/pharmacology , Ophthalmic Solutions/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Rabbits , Rats , Solubility , TOR Serine-Threonine Kinases/metabolism , Tissue Distribution
3.
Bioanalysis ; 11(8): 741-753, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30993998

ABSTRACT

Aim: Objective of this study is to develop a robust multi-matrix LC-MS/MS for the quantitation of endogenous short-chain fatty acids (SCFA) biomarkers in human plasma and urine. Methods: Developed method utilizes stable isotope-labeled internal standards, high-throughput derivatization procedure for sample preparation and LC-MS/MS analysis using multiple reaction monitoring transitions in positive electrospray ionization mode. Results: Surrogate matrix method was used for quantitation. Accuracy, precision, parallelism, curve linearity, derivatization efficiency, stability and recovery were all evaluated, and the results were well within the acceptable criteria. Conclusion: SCFA levels in human plasma and urine of inflammatory bowel disease patients versus non-disease subjects were quantified and compared by LC-MS/MS.


Subject(s)
Body Fluids/chemistry , Chromatography, Liquid/methods , Fatty Acids, Volatile/metabolism , Plasma/chemistry , Tandem Mass Spectrometry/methods , Urine/chemistry , Female , Humans , Male
4.
Clin Pharmacol Ther ; 106(1): 148-163, 2019 07.
Article in English | MEDLINE | ID: mdl-30107040

ABSTRACT

Precision medicine aims to use patient genomic, epigenomic, specific drug dose, and other data to define disease patterns that may potentially lead to an improved treatment outcome. Personalized dosing regimens based on tumor drug penetration can play a critical role in this approach. State-of-the-art techniques to measure tumor drug penetration focus on systemic exposure, tissue penetration, cellular or molecular engagement, and expression of pharmacological activity. Using in silico methods, this information can be integrated to bridge the gap between the therapeutic regimen and the pharmacological link with clinical outcome. These methodologies are described, and challenges ahead are discussed. Supported by many examples, this review shows how the combination of these techniques provides enhanced patient-specific information on drug accessibility at the tumor tissue level, target binding, and downstream pharmacology. Our vision of how to apply tumor drug penetration measurements offers a roadmap for the clinical implementation of precision dosing.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Precision Medicine/methods , Absorption, Physiological/genetics , Absorption, Physiological/physiology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Clinical Trials as Topic , Computer Simulation , Dose-Response Relationship, Drug , Humans , Models, Biological , Molecular Imaging/methods , Neoplasms/genetics
5.
Sci Transl Med ; 10(468)2018 11 21.
Article in English | MEDLINE | ID: mdl-30463918

ABSTRACT

Preclinical and clinical evidence indicates that a subset of asthma is driven by type 2 cytokines such as interleukin-4 (IL-4), IL-5, IL-9, and IL-13. Additional evidence predicts pathogenic roles for IL-6 and type I and type II interferons. Because each of these cytokines depends on Janus kinase 1 (JAK1) for signal transduction, and because many of the asthma-related effects of these cytokines manifest in the lung, we hypothesized that lung-restricted JAK1 inhibition may confer therapeutic benefit. To test this idea, we synthesized iJak-381, an inhalable small molecule specifically designed for local JAK1 inhibition in the lung. In pharmacodynamic models, iJak-381 suppressed signal transducer and activator of transcription 6 activation by IL-13. Furthermore, iJak-381 suppressed ovalbumin-induced lung inflammation in both murine and guinea pig asthma models and improved allergen-induced airway hyperresponsiveness in mice. In a model driven by human allergens, iJak-381 had a more potent suppressive effect on neutrophil-driven inflammation compared to systemic corticosteroid administration. The inhibitor iJak-381 reduced lung pathology, without affecting systemic Jak1 activity in rodents. Our data show that local inhibition of Jak1 in the lung can suppress lung inflammation without systemic Jak inhibition in rodents, suggesting that this strategy might be effective for treating asthma.


Subject(s)
Asthma/drug therapy , Asthma/enzymology , Janus Kinase 1/antagonists & inhibitors , Lung/enzymology , Protein Kinase Inhibitors/therapeutic use , Administration, Inhalation , Allergens , Animals , Asthma/pathology , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Disease Models, Animal , Eosinophils/drug effects , Eosinophils/metabolism , Eosinophils/pathology , Guinea Pigs , Inflammation/pathology , Janus Kinase 1/metabolism , Lung/drug effects , Lung/pathology , Ovalbumin , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Signal Transduction , Treatment Outcome
6.
Cell Metab ; 28(3): 383-399.e9, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30043751

ABSTRACT

The enzyme glutaminase (GLS1) is currently in clinical trials for oncology, yet there are no clear diagnostic criteria to identify responders. The evaluation of 25 basal breast lines expressing GLS1, predominantly through its splice isoform GAC, demonstrated that only GLS1-dependent basal B lines required it for maintaining de novo glutathione synthesis in addition to mitochondrial bioenergetics. Drug sensitivity profiling of 407 tumor lines with GLS1 and gamma-glutamylcysteine synthetase (GCS) inhibitors revealed a high degree of co-dependency on both enzymes across indications, suggesting that redox balance is a key function of GLS1 in tumors. To leverage these findings, we derived a pan-cancer metabolic signature predictive of GLS1/GCS co-dependency and validated it in vivo using four lung patient-derived xenograft models, revealing the additional requirement for expression of GAC above a threshold (log2RPKM + 1 ≥ 4.5, where RPKM is reads per kilobase per million mapped reads). Analysis of the pan-TCGA dataset with our signature identified multiple indications, including mesenchymal tumors, as putative responders to GLS1 inhibitors.


Subject(s)
Breast Neoplasms , Glutamate-Cysteine Ligase , Glutaminase , Lung Neoplasms , Mesenchymal Stem Cells , Metabolome , Animals , Biomarkers, Tumor/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Citric Acid/metabolism , Databases, Genetic , Female , Glutamate-Cysteine Ligase/antagonists & inhibitors , Glutamate-Cysteine Ligase/metabolism , Glutaminase/antagonists & inhibitors , Glutaminase/metabolism , Glutathione/metabolism , HEK293 Cells , Humans , Isoenzymes/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, SCID , Tumor Stem Cell Assay , Xenograft Model Antitumor Assays
9.
PLoS One ; 12(10): e0185862, 2017.
Article in English | MEDLINE | ID: mdl-28982154

ABSTRACT

Mitogen-activated protein kinase (MAPK) pathway dysregulation is implicated in >30% of all cancers, rationalizing the development of RAF, MEK and ERK inhibitors. While BRAF and MEK inhibitors improve BRAF mutant melanoma patient outcomes, these inhibitors had limited success in other MAPK dysregulated tumors, with insufficient pathway suppression and likely pathway reactivation. In this study we show that inhibition of either MEK or ERK alone only transiently inhibits the MAPK pathway due to feedback reactivation. Simultaneous targeting of both MEK and ERK nodes results in deeper and more durable suppression of MAPK signaling that is not achievable with any dose of single agent, in tumors where feedback reactivation occurs. Strikingly, combined MEK and ERK inhibition is synergistic in RAS mutant models but only additive in BRAF mutant models where the RAF complex is dissociated from RAS and thus feedback productivity is disabled. We discovered that pathway reactivation in RAS mutant models occurs at the level of CRAF with combination treatment resulting in a markedly more active pool of CRAF. However, distinct from single node targeting, combining MEK and ERK inhibitor treatment effectively blocks the downstream signaling as assessed by transcriptional signatures and phospho-p90RSK. Importantly, these data reveal that MAPK pathway inhibitors whose activity is attenuated due to feedback reactivation can be rescued with sufficient inhibition by using a combination of MEK and ERK inhibitors. The MEK and ERK combination significantly suppresses MAPK pathway output and tumor growth in vivo to a greater extent than the maximum tolerated doses of single agents, and results in improved anti-tumor activity in multiple xenografts as well as in two Kras mutant genetically engineered mouse (GEM) models. Collectively, these data demonstrate that combined MEK and ERK inhibition is functionally unique, yielding greater than additive anti-tumor effects and elucidates a highly effective combination strategy in MAPK-dependent cancer, such as KRAS mutant tumors.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Genes, ras , MAP Kinase Kinase Kinases/metabolism , Neoplasms/enzymology , Blotting, Western , HCT116 Cells , Humans , Neoplasms/genetics , Neoplasms/therapy , Reverse Transcriptase Polymerase Chain Reaction
10.
SLAS Discov ; 22(10): 1218-1228, 2017 12.
Article in English | MEDLINE | ID: mdl-28714776

ABSTRACT

To better understand regional brain glycosphingolipid (GSL) accumulation in Gaucher disease (GD) and its relationship to neuropathology, a feasibility study using mass spectrometry and immunohistochemistry was conducted using brains derived from a GD mouse model (4L/PS/NA) homozygous for a mutant GCase (V394L [4L]) and expressing a prosaposin hypomorphic (PS-NA) transgene. Whole brains from GD and control animals were collected using one hemisphere for MALDI FTICR IMS analysis and the other for quantitation by LC-ESI-MS/MS. MALDI IMS detected several HexCers across the brains. Comparison with the brain hematoxylin and eosin (H&E) revealed differential signal distributions in the midbrain, brain stem, and CB of the GD brain versus the control. Quantitation of serial brain sections with LC-ESI-MS/MS supported the imaging results, finding the overall HexCer levels in the 4L/PS-NA brains to be four times higher than the control. LC-ESI-MS/MS also confirmed that the elevated hexosyl isomers were glucosylceramides rather than galactosylceramides. MALDI imaging also detected differential analyte distributions of lactosylceramide species and gangliosides in the 4L/PS-NA brain, which was validated by LC-ESI-MS/MS. Immunohistochemistry revealed regional inflammation, altered autophagy, and defective protein degradation correlating with regions of GSL accumulation, suggesting that specific GSLs may have distinct neuropathological effects.


Subject(s)
Brain/metabolism , Gaucher Disease/metabolism , Glycosphingolipids/metabolism , Imaging, Three-Dimensional , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Brain/pathology , Chromatography, Liquid , Mice, Inbred C57BL , Organ Specificity , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry
11.
J Am Soc Mass Spectrom ; 28(8): 1709-1715, 2017 08.
Article in English | MEDLINE | ID: mdl-28401432

ABSTRACT

Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has proven to be a quick, robust, and label-free tool to produce two-dimensional (2D) ion-density maps representing the distribution of a variety of analytes across a tissue section of interest. In addition, three-dimensional (3D) imaging mass spectrometry workflows have been developed that are capable of visualizing these same analytes throughout an entire volume of a tissue rather than a single cross-section. Until recently, the use of Fourier transform ion cyclotron resonance (FTICR) mass spectrometers for 3D volume reconstruction has been impractical due to software limitations, such as inadequate capacity to manipulate the extremely large data files produced during an imaging experiment. Fortunately with recent software and hardware advancements, 3D reconstruction from MALDI FTICR IMS datasets is now feasible. Here we describe the first proof of principle study for a 3D volume reconstruction of an entire mouse lung using data collected on a FTICR mass spectrometer. Each lung tissue section was analyzed with high mass resolution and mass accuracy, and considered as an independent dataset. Each subsequent lung section image, or lung dataset, was then co-registered to its adjacent section to reconstruct a 3D volume. Volumes representing various endogenous lipid species were constructed, including sphingolipids and phosphatidylcholines (PC), and species confirmation was performed with on-tissue collision induced dissociation (CID). Graphical Abstract ᅟ.


Subject(s)
Imaging, Three-Dimensional/methods , Lung/anatomy & histology , Lung/ultrastructure , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Cyclotrons , Fourier Analysis , Male , Mice , Mice, Inbred BALB C , Models, Anatomic
12.
J Pharm Biomed Anal ; 140: 11-19, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28334553

ABSTRACT

A multi-matrix hydrophilic interaction liquid chromatography tandem mass spectrometric method (HILIC-MS/MS) was developed for the quantitation of N-Acetyl Aspartic acid (NAA) using stable isotope labeled internal standard, D3-NAA in various biological matrices such as human plasma, human CSF, mouse plasma, brain and spinal cord. A high throughput 96-well plate format supported liquid extraction (SLE) procedure was developed and used for sample preparation. Mass spectrometric analysis of NAA was performed using selected reaction monitoring transitions in positive electrospray ionization mode. As NAA is endogenously present, a surrogate matrix approach was used for quantitation of NAA and the method was qualified over linear calibration curve range of 0.01-10µg/mL. Intra and inter assay precision indicated by percent relative standard deviation (%RSD) was less than 7.1% for low, medium, medium high and high QCs. The accuracy of the method ranged from 92.6-107.0% of nominal concentration for within-run and between-run for the same QCs. Extraction recovery of NAA and D3-NAA was greater than 76%. Stability of NAA was established in the above biological matrices under bench top (RT, 5h), freeze thaw (-20±10°C, 3 cycles) and moues/human plasma sample collection (Wet ice, RT) conditions. HILIC-MS/MS method was then used to quantify and compare the NAA levels in human plasma and CSF of ALS patients versus control human subjects. NAA CSF levels in control human subjects (73.3±31.0ng/mL,N=10) were found to be slightly higher than ALS patients (46.1±22.6ng/mL, N=10) (P=0.04). No differences were observed in NAA plasma levels in human control subjects (49.7±13.8ng/mL,N=9) as compared to ALS patients (49.6±8.1ng/mL, N=10) (P=0.983). NAA endogenous concentrations in mouse plasma, brain and spinal cord were found to be 243.8±56.8ng/mL (N=6), 1029.8±115.2µg/g tissue weight (N=5) and 487.6±178.4µg/g tissue weight (N=5) respectively.


Subject(s)
Aspartic Acid/analysis , Animals , Biomarkers , Chromatography, High Pressure Liquid , Chromatography, Liquid , Humans , Hydrophobic and Hydrophilic Interactions , Mice , Reproducibility of Results , Tandem Mass Spectrometry
13.
Drug Metab Dispos ; 45(6): 581-585, 2017 06.
Article in English | MEDLINE | ID: mdl-28289057

ABSTRACT

The rate of enzyme degradation (kdeg) is an important input parameter for the prediction of clinical drug-drug interactions (DDIs) that result from mechanism-based inactivation or induction of cytochrome P450 (P450). Currently, a large range of reported estimates for CYP3A4 enzyme degradation exists, and consequently extensive uncertainty exists in steady-state predictions for DDIs. In the current investigations, the stable isotope labeled amino acids in culture technique was applied to a long-lived primary human hepatocyte culture, HepatoPac, to directly monitor the degradation of CYP3A4. This approach allowed selective isotope labeling of a population of de novo synthesized CYP3A4 and specific quantification of proteins with mass spectrometry to determine the CYP3A4 degradation within the hepatocytes. The kdeg estimate was 0.026 ± 0.005 hour-1 This value was reproduced by cultures derived across four individual donors. For these cultures, the data indicated that CYP3A4 mRNA and total protein expression (i.e., labeled and unlabeled P450s), and activity were stable over the period where degradation had been determined. This kdeg value for CYP3A4 was in good agreement with recently reported values that used alternate analytical approaches but also employed micropatterned primary human hepatocytes as the in vitro model.


Subject(s)
Amino Acids/metabolism , Cytochrome P-450 CYP3A/metabolism , Hepatocytes/metabolism , Isotopes/metabolism , Cells, Cultured , Coculture Techniques/methods , Drug Interactions/physiology , Humans , Isotope Labeling/methods , Kinetics , RNA, Messenger/metabolism
14.
Drug Metab Dispos ; 44(12): 1881-1889, 2016 12.
Article in English | MEDLINE | ID: mdl-27638506

ABSTRACT

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Limited treatment options have only marginally impacted patient survival over the past decades. The phophatidylinositol 3-kinase (PI3K) pathway, frequently altered in GBM, represents a potential target for the treatment of this glioma. 5-(6,6-Dimethyl-4-morpholino-8,9-dihydro-6H-[1,4]oxazino[4,3-e]purin-2-yl)pyrimidin-2-amine (GDC-0084) is a PI3K inhibitor that was specifically optimized to cross the blood-brain barrier. The goals of our studies were to characterize the brain distribution, pharmacodynamic (PD) effect, and efficacy of GDC-0084 in orthotopic xenograft models of GBM. GDC-0084 was tested in vitro to assess its sensitivity to the efflux transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) and in vivo in mice to evaluate its effects on the PI3K pathway in intact brain. Mice bearing U87 or GS2 intracranial tumors were treated with GDC-0084 to assess its brain distribution by matrix-assisted laser desorption ionization (MALDI) imaging and measure its PD effects and efficacy in GBM orthotopic models. Studies in transfected cells indicated that GDC-0084 was not a substrate of P-gp or BCRP. GDC-0084 markedly inhibited the PI3K pathway in mouse brain, causing up to 90% suppression of the pAkt signal. MALDI imaging showed GDC-0084 distributed evenly in brain and intracranial U87 and GS2 tumors. GDC-0084 achieved significant tumor growth inhibition of 70% and 40% against the U87 and GS2 orthotopic models, respectively. GDC-0084 distribution throughout the brain and intracranial tumors led to potent inhibition of the PI3K pathway. Its efficacy in orthotopic models of GBM suggests that it could be effective in the treatment of GBM. GDC-0084 is currently in phase I clinical trials.


Subject(s)
Brain Neoplasms/metabolism , Brain/metabolism , Glioblastoma/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain/drug effects , Brain Neoplasms/drug therapy , Cell Line , Cell Line, Tumor , Dogs , Female , Glioblastoma/drug therapy , Glioma/drug therapy , Glioma/metabolism , Humans , Indazoles/metabolism , Indazoles/pharmacology , Madin Darby Canine Kidney Cells , Mice , Mice, Nude , Protein Kinase Inhibitors/pharmacology
15.
J Med Chem ; 59(12): 5650-60, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27227380

ABSTRACT

The extracellular signal-regulated kinases ERK1/2 represent an essential node within the RAS/RAF/MEK/ERK signaling cascade that is commonly activated by oncogenic mutations in BRAF or RAS or by upstream oncogenic signaling. While targeting upstream nodes with RAF and MEK inhibitors has proven effective clinically, resistance frequently develops through reactivation of the pathway. Simultaneous targeting of multiple nodes in the pathway, such as MEK and ERK, offers the prospect of enhanced efficacy as well as reduced potential for acquired resistance. Described herein is the discovery and characterization of GDC-0994 (22), an orally bioavailable small molecule inhibitor selective for ERK kinase activity.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyridones/pharmacology , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dogs , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridones/chemical synthesis , Pyridones/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Rats , Structure-Activity Relationship
16.
Bioanalysis ; 7(9): 1069-79, 2015.
Article in English | MEDLINE | ID: mdl-26039805

ABSTRACT

BACKGROUND: In early drug-discovery research, traditional techniques to analyze drug concentrations in tissues for bioanalytical needs include bead beaters and probe homogenization devices, but are not as effective for tough fibrous tissues. To prepare these tissues, the enzyme collagenase was used to digest the collagen fibers present in epithelial and connective tissue. RESULTS: The benefits of tissue homogenization using a bead beater following collagenase treatment of samples, as opposed to using bead beating alone, was investigated. Matrix effect, recovery factor and stability with and without collagenase were assessed. CONCLUSION: Little to no effects on the quality and reliability of collagenase treated samples were observed. This enzymatic approach is a feasible and effective tool for tissue homogenization and subsequent analysis by LC-MS/MS.


Subject(s)
Collagenases/metabolism , Pharmaceutical Preparations/analysis , Animals , Drug Discovery , Feasibility Studies , Freezing , Pharmaceutical Preparations/isolation & purification , Rats
17.
J Am Soc Mass Spectrom ; 26(6): 967-73, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25840813

ABSTRACT

Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry has been adopted in the pharmaceutical industry as a useful tool to detect xenobiotic distribution within tissues. A unique sample preparation approach for MALDI imaging has been described here for the extraction and detection of cobimetinib and clozapine, which were previously undetectable in mouse and rat brain using a single matrix application step. Employing a combination of a buffer wash and a cyclohexane pre-extraction step prior to standard matrix application, the xenobiotics were successfully extracted and detected with an 8 to 20-fold gain in sensitivity. This alternative approach for sample preparation could serve as an advantageous option when encountering difficult to detect analytes.


Subject(s)
Azetidines/pharmacokinetics , Brain Chemistry , Brain/anatomy & histology , Clozapine/pharmacokinetics , GABA Antagonists/pharmacokinetics , MAP Kinase Kinase 1/antagonists & inhibitors , Piperidines/pharmacokinetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Azetidines/administration & dosage , Azetidines/analysis , Clozapine/administration & dosage , Clozapine/analysis , GABA Antagonists/administration & dosage , GABA Antagonists/analysis , Optical Imaging/methods , Piperidines/administration & dosage , Piperidines/analysis , Rats, Sprague-Dawley
18.
J Med Chem ; 58(4): 1976-91, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25603482
19.
Mol Pharm ; 11(11): 4199-207, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25243894

ABSTRACT

Cobimetinib is a MEK inhibitor currently in clinical trials as an anticancer agent. The objectives of this study were to determine in vitro and in vivo if cobimetinib is a substrate of P-glycoprotein (P-gp) and/or breast cancer resistance protein (Bcrp1) and to assess the implications of efflux on cobimetinib pharmacokinetics (PK), brain penetration, and target modulation. Cell lines transfected with P-gp or Bcrp1 established that cobimetinib was a substrate of P-gp but not a substrate of Bcrp1. In vivo, after intravenous and oral administration of cobimetinib to FVB (wild-type; WT), Mdr1a/b(-/-), Bcrp1 (-/-), and Mdr1a/b(-/-)/Bcrp(-/-) knockout (KO) mice, clearance was similar in WT (35.5 ± 16.7 mL/min/kg) and KO animals (22.0 ± 3.6 to 27.6 ± 5.2 mL/min/kg); oral exposure was also similar between WT and KO animals. After an oral 10 mg/kg dose of cobimetinib, the mean total brain to plasma ratio (Kp) at 6 h postdose was 0.3 and 0.2 in WT and Bcrp1(-/-) mice, respectively. In Mdr1a/b(-/-) and Mdr1a/1b/Bcrp1(-/-) KO mice and WT mice treated with elacridar (a P-gp and BCRP inhibitor), Kp increased to 11, 6, and 7, respectively. Increased brain exposure in Mdr1a/b(-/-) and Mdr1a/1b/Bcrp1(-/-) KO and elacridar treated mice was accompanied by up to ∼65% suppression of the target (pErk) in brain tissue, compared to WT mice. By MALDI imaging, the cobimetinib signal intensity was relatively high and was dispersed throughout the brain of Mdr1a/1b/Bcrp1(-/-) KO mice compared to low/undetectable signal intensity in WT mice. The efflux of cobimetinib by P-gp may have implications for the treatment of patients with brain tumors/metastases.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/physiology , ATP-Binding Cassette Transporters/physiology , Azetidines/pharmacokinetics , Blood-Brain Barrier/drug effects , Brain/metabolism , MAP Kinase Kinase 1/antagonists & inhibitors , Piperidines/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Animals , Azetidines/pharmacology , Biological Transport , Brain/drug effects , Chromatography, Liquid , Drug Resistance, Multiple/drug effects , Female , Mice , Mice, Knockout , Piperidines/pharmacology , Tandem Mass Spectrometry , Tissue Distribution , ATP-Binding Cassette Sub-Family B Member 4
20.
Bioorg Med Chem Lett ; 24(12): 2635-9, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24813737

ABSTRACT

The discovery and optimization of a series of tetrahydropyridopyrimidine based extracellular signal-regulated kinase (Erks) inhibitors discovered via HTS and structure based drug design is reported. The compounds demonstrate potent and selective inhibition of Erk2 and knockdown of phospho-RSK levels in HepG2 cells and tumor xenografts.


Subject(s)
Drug Discovery , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Pyridines/chemical synthesis , Pyridines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Cell Line, Tumor , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Enzyme Activation/drug effects , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyridines/chemistry , Pyrimidines/chemistry , Small Molecule Libraries , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...