Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(15): e2321759121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38579009

ABSTRACT

Adjacent plant cells are connected by specialized cell wall regions, called middle lamellae, which influence critical agricultural characteristics, including fruit ripening and organ abscission. Middle lamellae are enriched in pectin polysaccharides, specifically homogalacturonan (HG). Here, we identify a plant-specific Arabidopsis DUF1068 protein, called NKS1/ELMO4, that is required for middle lamellae integrity and cell adhesion. NKS1 localizes to the Golgi apparatus and loss of NKS1 results in changes to Golgi structure and function. The nks1 mutants also display HG deficient phenotypes, including reduced seedling growth, changes to cell wall composition, and tissue integrity defects. These phenotypes are comparable to qua1 and qua2 mutants, which are defective in HG biosynthesis. Notably, genetic interactions indicate that NKS1 and the QUAs work in a common pathway. Protein interaction analyses and modeling corroborate that they work together in a stable protein complex with other pectin-related proteins. We propose that NKS1 is an integral part of a large pectin synthesis protein complex and that proper function of this complex is important to support Golgi structure and function.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Adhesion/genetics , Pectins/metabolism , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Cell Wall/metabolism
2.
Trends Plant Sci ; 27(1): 56-68, 2022 01.
Article in English | MEDLINE | ID: mdl-34561180

ABSTRACT

Perennial life cycles enable plants to have remarkably long lifespans, as exemplified by trees that can live for thousands of years. For this, they require sophisticated regulatory networks that sense environmental changes and initiate adaptive responses in their growth patterns. Recent research has gradually elucidated fundamental mechanisms underlying the perennial life cycle. Intriguingly, several conserved components of the floral transition pathway in annuals such as Arabidopsis thaliana also participate in these regulatory mechanisms underpinning perenniality. Here, we provide an overview of perennials' physiological features and summarise their recently discovered molecular foundations. We also highlight the importance of deepening our understanding of perenniality in the development of perennial grain crops, which are promising elements of future sustainable agriculture.


Subject(s)
Arabidopsis , Agriculture , Arabidopsis/genetics , Crops, Agricultural , Edible Grain , Trees
3.
Curr Biol ; 31(6): 1154-1164.e3, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33417884

ABSTRACT

Tissue bending is vital to plant development, as exemplified by apical hook formation during seedling emergence by bending of the hypocotyl. How tissue bending is coordinated during development remains poorly understood, especially in plants where cells are attached via rigid cell walls. Asymmetric distribution of the plant hormone auxin underlies differential cell elongation during apical hook formation. Yet the underlying mechanism remains unclear. Here, we demonstrate spatial correlation between asymmetric auxin distribution, methylesterified homogalacturonan (HG) pectin, and mechanical properties of the epidermal layer of the hypocotyl in Arabidopsis. Genetic and cell biological approaches show that this mechanochemical asymmetry is essential for differential cell elongation. We show that asymmetric auxin distribution underlies differential HG methylesterification, and conversely changes in HG methylesterification impact the auxin response domain. Our results suggest that a positive feedback loop between auxin distribution and HG methylesterification underpins asymmetric cell wall mechanochemical properties to promote tissue bending and seedling emergence.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Seedlings/growth & development , Seedlings/metabolism , Esterification , Feedback, Physiological , Hypocotyl/metabolism , Methylation , Pectins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...