Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 50(5): 3103-3116, 2023 May.
Article in English | MEDLINE | ID: mdl-36893292

ABSTRACT

BACKGROUND: Real-time motion monitoring (RTMM) is necessary for accurate motion management of intrafraction motions during radiation therapy (RT). PURPOSE: Building upon a previous study, this work develops and tests an improved RTMM technique based on real-time orthogonal cine magnetic resonance imaging (MRI) acquired during magnetic resonance-guided adaptive RT (MRgART) for abdominal tumors on MR-Linac. METHODS: A motion monitoring research package (MMRP) was developed and tested for RTMM based on template rigid registration between beam-on real-time orthogonal cine MRI and pre-beam daily reference 3D-MRI (baseline). The MRI data acquired under free-breathing during the routine MRgART on a 1.5T MR-Linac for 18 patients with abdominal malignancies of 8 liver, 4 adrenal glands (renal fossa), and 6 pancreas cases were used to evaluate the MMRP package. For each patient, a 3D mid-position image derived from an in-house daily 4D-MRI was used to define a target mask or a surrogate sub-region encompassing the target. Additionally, an exploratory case reviewed for an MRI dataset of a healthy volunteer acquired under both free-breathing and deep inspiration breath-hold (DIBH) was used to test how effectively the RTMM using the MMRP can address through-plane motion (TPM). For all cases, the 2D T2/T1-weighted cine MRIs were captured with a temporal resolution of 200 ms interleaved between coronal and sagittal orientations. Manually delineated contours on the cine frames were used as the ground-truth motion. Common visible vessels and segments of target boundaries in proximity to the target were used as anatomical landmarks for reproducible delineations on both the 3D and the cine MRI images. Standard deviation of the error (SDE) between the ground-truth and the measured target motion from the MMRP package were analyzed to evaluate the RTMM accuracy. The maximum target motion (MTM) was measured on the 4D-MRI for all cases during free-breathing. RESULTS: The mean (range) centroid motions for the 13 abdominal tumor cases were 7.69 (4.71-11.15), 1.73 (0.81-3.05), and 2.71 (1.45-3.93) mm with an overall accuracy of <2 mm in the superior-inferior (SI), the left-right (LR), and the anterior-posterior (AP) directions, respectively. The mean (range) of the MTM from the 4D-MRI was 7.38 (2-11) mm in the SI direction, smaller than the monitored motion of centroid, demonstrating the importance of the real-time motion capture. For the remaining patient cases, the ground-truth delineation was challenging under free-breathing due to the target deformation and the large TPM in the AP direction, the implant-induced image artifacts, and/or the suboptimal image plane selection. These cases were evaluated based on visual assessment. For the healthy volunteer, the TPM of the target was significant under free-breathing which degraded the RTMM accuracy. RTMM accuracy of <2 mm was achieved under DIBH, indicating DIBH is an effective method to address large TPM. CONCLUSIONS: We have successfully developed and tested the use of a template-based registration method for an accurate RTMM of abdominal targets during MRgART on a 1.5T MR-Linac without using injected contrast agents or radio-opaque implants. DIBH may be used to effectively reduce or eliminate TPM of abdominal targets during RTMM.


Subject(s)
Abdominal Neoplasms , Magnetic Resonance Imaging, Cine , Humans , Magnetic Resonance Imaging, Cine/methods , Radiotherapy Planning, Computer-Assisted , Magnetic Resonance Imaging/methods , Motion , Abdominal Neoplasms/diagnostic imaging , Abdominal Neoplasms/radiotherapy , Respiration
2.
Med Phys ; 47(8): 3554-3566, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32402111

ABSTRACT

PURPOSE: Real-time high soft-tissue contrast magnetic resonance imaging (MRI) from the MR-Linac offers the best opportunity for accurate motion tracking during radiation therapy delivery via high-frequency two-dimensional (2D) cine imaging. This work investigates the efficacy of real-time organ motion tracking based on the registration of MRI acquired on MR-Linac. METHODS: Algorithms based on image intensity were developed to determine the three-dimensional (3D) translation of abdominal targets. 2D and 3D abdominal MRIs were acquired for 10 healthy volunteers using a high-field MR-Linac. For each volunteer, 3D respiration-gated T2 and 2D T2/T1-weighted cine in sagittal, coronal, and axial planes with a planar temporal resolution of 0.6 for 60 s was captured. Datasets were also collected on MR-compatible physical and virtual four-dimensional (4D) motion phantoms. Target contours for the liver and pancreas from the 3D T2 were populated to the cine and assumed as the ground-truth motion. We performed image registration using a research software to track the target 3D motion. Standard deviations of the error (SDE) between the ground-truth and tracking were analyzed. RESULTS: Algorithms using a research software were demonstrated to be capable of tracking arbitrary targets in the abdomen at 5 Hz with an overall accuracy of 0.6 mm in phantom studies and 2.1 mm in volunteers. However, this value is subject to patient-specific considerations, namely motion amplitude. Calculation times of < 50 ms provide a pathway of real-time motion tracking integration. A major challenge in using 2D cine MRI to track the target is handling the full 3D motion of the target. CONCLUSIONS: Feasibility to track organ motion using intensity-based registration of MRIs was demonstrated for abdominal targets. Tracking accuracy of about 2 mm was achieved for the motion of the liver and pancreatic head for typical patient motion. Further development is ongoing to improve the tracking algorithm for large and complex motions.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging, Cine , Abdomen/diagnostic imaging , Feasibility Studies , Humans , Magnetic Resonance Imaging , Motion , Movement , Phantoms, Imaging , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL
...