Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892126

ABSTRACT

The association between vitamin D deficiency and cardiovascular disease remains a controversial issue. This study aimed to further elucidate the role of vitamin D signaling in the development of left ventricular (LV) hypertrophy and dysfunction. To ablate the vitamin D receptor (VDR) specifically in cardiomyocytes, VDRfl/fl mice were crossed with Mlcv2-Cre mice. To induce LV hypertrophy experimentally by increasing cardiac afterload, transverse aortic constriction (TAC) was employed. Sham or TAC surgery was performed in 4-month-old, male, wild-type, VDRfl/fl, Mlcv2-Cre, and cardiomyocyte-specific VDR knockout (VDRCM-KO) mice. As expected, TAC induced profound LV hypertrophy and dysfunction, evidenced by echocardiography, aortic and cardiac catheterization, cardiac histology, and LV expression profiling 4 weeks post-surgery. Sham-operated mice showed no differences between genotypes. However, TAC VDRCM-KO mice, while having comparable cardiomyocyte size and LV fibrosis to TAC VDRfl/fl controls, exhibited reduced fractional shortening and ejection fraction as measured by echocardiography. Spatial transcriptomics of heart cryosections revealed more pronounced pro-inflammatory and pro-fibrotic gene regulatory networks in the stressed cardiac tissue niches of TAC VDRCM-KO compared to VDRfl/fl mice. Hence, our study supports the notion that vitamin D signaling in cardiomyocytes plays a protective role in the stressed heart.


Subject(s)
Disease Models, Animal , Fibrosis , Gene Regulatory Networks , Hypertrophy, Left Ventricular , Mice, Knockout , Myocytes, Cardiac , Receptors, Calcitriol , Signal Transduction , Vitamin D , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mice , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/pathology , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Vitamin D/metabolism , Male , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology
2.
Res Sq ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38196615

ABSTRACT

Chronic kidney disease (CKD) is a global health epidemic that significantly increases mortality due to cardiovascular disease. Left ventricular hypertrophy (LVH) is an important mechanism of cardiac injury in CKD. High serum levels of fibroblast growth factor (FGF) 23 in patients with CKD may contribute mechanistically to the pathogenesis of LVH by activating FGF receptor (FGFR) 4 signaling in cardiac myocytes. Mitochondrial dysfunction and cardiac metabolic remodeling are early features of cardiac injury that predate development of hypertrophy, but these mechanisms of disease have been insufficiently studied in models of CKD. Wild-type mice with CKD induced by adenine diet developed LVH that was preceded by morphological changes in mitochondrial structure and evidence of cardiac mitochondrial and metabolic dysfunction. In bioengineered cardio-bundles and neonatal rat ventricular myocytes grown in vitro, FGF23-mediated activation of FGFR4 caused a mitochondrial pathology, characterized by increased bioenergetic stress and increased glycolysis, that preceded the development of cellular hypertrophy. The cardiac metabolic changes and associated mitochondrial alterations in mice with CKD were prevented by global or cardiac-specific deletion of FGFR4. These findings indicate that metabolic remodeling and eventually mitochondrial dysfunction are early cardiac complications of CKD that precede structural remodeling of the heart. Mechanistically, FGF23-mediated activation of FGFR4 causes mitochondrial dysfunction, suggesting that early pharmacologic inhibition of FGFR4 might serve as novel therapeutic intervention to prevent development of LVH and heart failure in patients with CKD.

3.
Nutrients ; 14(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36501215

ABSTRACT

The seminal discoveries that parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) are major endocrine regulators of vitamin D metabolism led to a significant improvement in our understanding of the pivotal roles of peptide hormones and small proteohormones in the crosstalk between different organs, regulating vitamin D metabolism. The interaction of vitamin D, FGF23 and PTH in the kidney is essential for maintaining mineral homeostasis. The proteohormone FGF23 is mainly secreted from osteoblasts and osteoclasts in the bone. FGF23 acts on proximal renal tubules to decrease production of the active form of vitamin D (1,25(OH)2D) by downregulating transcription of 1α-hydroxylase (CYP27B1), and by activating transcription of the key enzyme responsible for vitamin D degradation, 24-hydroxylase (CYP24A1). Conversely, the peptide hormone PTH stimulates 1,25(OH)2D renal production by upregulating the expression of 1α-hydroxylase and downregulating that of 24-hydroxylase. The circulating concentration of 1,25(OH)2D is a positive regulator of FGF23 secretion in the bone, and a negative regulator of PTH secretion from the parathyroid gland, forming feedback loops between kidney and bone, and between kidney and parathyroid gland, respectively. In recent years, it has become clear that vitamin D signaling has important functions beyond mineral metabolism. Observation of seasonal variations in blood pressure and the subsequent identification of vitamin D receptor (VDR) and 1α-hydroxylase in non-renal tissues such as cardiomyocytes, endothelial and smooth muscle cells, suggested that vitamin D may play a role in maintaining cardiovascular health. Indeed, observational studies in humans have found an association between vitamin D deficiency and hypertension, left ventricular hypertrophy and heart failure, and experimental studies provided strong evidence for a role of vitamin D signaling in the regulation of cardiovascular function. One of the proposed mechanisms of action of vitamin D is that it functions as a negative regulator of the renin-angiotensin-aldosterone system (RAAS). This finding established a novel link between vitamin D and RAAS that was unexplored until then. During recent years, major progress has been made towards a more complete understanding of the mechanisms by which FGF23, PTH, and RAAS regulate vitamin D metabolism, especially at the genomic level. However, there are still major gaps in our knowledge that need to be filled by future research. The purpose of this review is to highlight our current understanding of the molecular mechanisms underlying the interaction between vitamin D, FGF23, PTH, and RAAS, and to discuss the role of these mechanisms in physiology and pathophysiology.


Subject(s)
Parathyroid Hormone , Peptide Hormones , Humans , Fibroblast Growth Factors/metabolism , Parathyroid Hormone/metabolism , Peptide Hormones/metabolism , Renin-Angiotensin System , Vitamin D/metabolism , Vitamin D3 24-Hydroxylase/genetics , Vitamins
4.
Biomedicines ; 10(10)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36289771

ABSTRACT

Increased dietary phosphate intake has been associated with severity of coronary artery disease, increased carotid intima-media thickness, left ventricular hypertrophy (LVH), and increased cardiovascular mortality and morbidity in individuals with normal renal function as well as in patients suffering from chronic kidney disease. However, the underlying mechanisms are still unclear. To further elucidate the cardiovascular sequelae of long-term elevated phosphate intake, we maintained male C57BL/6 mice on a calcium, phosphate, and lactose-enriched diet (CPD, 2% Ca, 1.25% P, 20% lactose) after weaning them for 14 months and compared them with age-matched male mice fed a normal mouse diet (ND, 1.0% Ca, 0.7% P). Notably, the CPD has a balanced calcium/phosphate ratio, allowing the effects of elevated dietary phosphate intake largely independent of changes in parathyroid hormone (PTH) to be investigated. In agreement with the rationale of this experiment, mice maintained on CPD for 14 months were characterized by unchanged serum PTH but showed elevated concentrations of circulating intact fibroblast growth factor-23 (FGF23) compared with mice on ND. Cardiovascular phenotyping did not provide evidence for LVH, as evidenced by unchanged LV chamber size, normal cardiomyocyte area, lack of fibrosis, and unchanged molecular markers of hypertrophy (Bnp) between the two groups. However, intra-arterial catheterization revealed increases in systolic pressure, mean arterial pressure, and pulse pressure in mice fed the CPD. Interestingly, chronically elevated dietary phosphate intake stimulated the renin-angiotensin-aldosterone system (RAAS) as evidenced by increased urinary aldosterone in animals fed the CPD, relative to the ND controls. Furthermore, the catecholamines epinephrine, norepinephrine, and dopamine as well as the catecholamine metabolites metanephrine. normetanephrine and methoxytyramine as measured by mass spectrometry were elevated in the urine of mice on CPD, relative to mice on the ND. These changes were partially reversed by switching 14-month-old mice on CPD back to ND for 2 weeks. In conclusion, our data suggest that excess dietary phosphate induces a rise in blood pressure independent of secondary hyperparathyroidism, and that this effect may be mediated through activation of the RAAS and stimulation of the sympathetic tone.

5.
Biomedicines ; 10(7)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35884995

ABSTRACT

High circulating levels of fibroblast growth factor-23 (FGF23) are associated with left ventricular hypertrophy as well as increased morbidity and mortality in patients suffering from chronic kidney disease. However, the mechanisms underlying this association are controversial. Here, we aimed to further characterize the cardiovascular sequelae of long term endogenous FGF23 hypersecretion using 14-month-old male Hyp mice as a model of FGF23 excess. Hyp mice were characterized by a ~10-fold increase in circulating intact FGF23, hypophosphatemia, increased serum aldosterone, but normal kidney function, relative to wildtype (WT) controls. Cardiovascular phenotyping did not reveal any evidence of left ventricular hypertrophy or functional impairment in 14-month-old Hyp mice. Fractional shortening, ejection fraction, molecular markers of hypertrophy (Anp, Bnp), and intracardiac markers of contractility and diastolic function were all unchanged in these animals. However, intraarterial catheterization revealed an increase in systolic, diastolic, and mean arterial pressure of ~12 mm Hg in aged Hyp mice relative to WT controls. Hypertension in Hyp mice was associated with increased peripheral vascular resistance. To test the hypothesis that a stimulation of the renin-angiotensin-aldosterone system (RAAS) contributes to hypertension in aged Hyp mice, we administered the angiotensin receptor blocker losartan (30 mg/kg twice daily) or the mineralocorticoid receptor antagonist canrenone (30 mg/kg once daily) to aged Hyp and WT mice over 5 days. Both drugs had minor effects on blood pressure in WT mice, but reduced blood pressure and peripheral vascular resistance in Hyp mice, suggesting that a stimulation of the RAAS contributes to hypertension in aged Hyp mice.

6.
JBMR Plus ; 5(12): e10558, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34950827

ABSTRACT

Apart from its phosphaturic action, the bone-derived hormone fibroblast growth factor-23 (FGF23) is also an essential regulator of vitamin D metabolism. The main target organ of FGF23 is the kidney, where FGF23 suppresses transcription of the key enzyme in vitamin D hormone (1,25(OH)2D) activation, 1α-hydroxylase, and activates transcription of the key enzyme responsible for vitamin D degradation, 24-hydroxylase, in proximal renal tubules. The circulating concentration of 1,25(OH)2D is a positive regulator of FGF23 secretion in bone, forming a feedback loop between kidney and bone. The importance of FGF23 as regulator of vitamin D metabolism is underscored by the fact that in the absence of FGF23 signaling, the tight control of renal 1α-hydroxylase fails, resulting in overproduction of 1,25(OH)2D in mice and men. During recent years, big strides have been made toward a more complete understanding of the mechanisms underlying the FGF23-mediated regulation of vitamin D metabolism, especially at the genomic level. However, there are still major gaps in our knowledge that need to be filled by future research. Importantly, the intracellular signaling cascades downstream of FGF receptors regulating transcription of 1α-hydroxylase and 24-hydroxylase in proximal renal tubules still remain unresolved. The purpose of this review is to highlight our current understanding of the molecular mechanisms underlying the regulation of vitamin D metabolism by FGF23, and to discuss the role of these mechanisms in physiology and pathophysiology. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

7.
Int J Mol Sci ; 21(18)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899880

ABSTRACT

Vitamin D deficiency is the most common nutritional deficiency, affecting almost one billion people worldwide. Vitamin D is mostly known for its role in intestinal calcium absorption and bone mineralization. However, the observation of seasonal changes in blood pressure and the subsequent identification of vitamin D receptor (VDR) and 1α-hydroxylase in cardiomyocytes, as well as endothelial and vascular smooth muscle cells, implicated a role of vitamin D in the cardiovascular system. Animal studies provided compelling evidence that vitamin D signaling is essential for cardiovascular integrity, especially for the regulation of vascular tone and as an antifibrotic and antihypertrophic signaling pathway in the heart. In addition, observational studies reported an association between vitamin D deficiency and risk of hypertension, atherosclerosis, and heart failure. However, recent clinical intervention studies failed to prove the causal relationship between vitamin D supplementation and beneficial effects on cardiovascular health. In this review, we aim to highlight our current understanding of the role of vitamin D in the cardiovascular system and to find potential explanations for the large discrepancies between the outcome of experimental studies and clinical intervention trials.


Subject(s)
Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Vitamin D/metabolism , Animals , Atherosclerosis/complications , Atherosclerosis/physiopathology , Blood Pressure/drug effects , Dietary Supplements , Heart/physiopathology , Heart Failure/complications , Heart Failure/physiopathology , Humans , Hypertension/complications , Hypertension/physiopathology , Receptors, Calcitriol/metabolism , Risk Factors , Vitamin D/pharmacology , Vitamin D Deficiency/complications , Vitamin D Deficiency/physiopathology
8.
PLoS One ; 13(10): e0204803, 2018.
Article in English | MEDLINE | ID: mdl-30273386

ABSTRACT

Epidemiological studies have linked vitamin D deficiency to an increased incidence of myocardial infarction and support a role for vitamin D signalling in the pathophysiology of myocardial infarction. Vitamin D deficiency results in the development of secondary hyperparathyroidism, however, the role of secondary hyperparathyroidism in the pathophysiology of myocardial infarction is not known. Here, we aimed to explore further the secondary hyperparathyroidism independent role of vitamin D signalling in the pathophysiology of myocardial infarction by inducing experimental myocardial infarction in 3-month-old, male, wild-type mice and in mice lacking a functioning vitamin D receptor. In order to prevent secondary hyperparathyroidism in vitamin D receptor mutant mice, all mice were maintained on a rescue diet enriched with calcium, phosphorus, and lactose. Surprisingly, survival rate, cardiac function as measured by echocardiography and intra-cardiac catheterisation and cardiomyocyte size were indistinguishable between normocalcaemic vitamin D receptor mutant mice and wild-type controls, 2 and 8 weeks post-myocardial infarction. In addition, the myocardial infarction-induced inflammatory response was similar in vitamin D receptor mutants and wild-type mice, as evidenced by a comparable upregulation in cardiac interleukin-1-ß and tumor-necrosis-factor-α mRNA abundance and similar elevations in circulating interleukin-1-ß and tumor-necrosis-factor-α. Our data suggest that the lack of vitamin D signalling in normocalcaemic vitamin D receptor mutants has no major detrimental effect on cardiac function and outcome post-myocardial infarction. Our study may have important clinical implications because it suggests that the secondary hyperparathyroidism induced by vitamin D deficiency, rather than the lack of vitamin D signalling per se, may negatively impact cardiac function post-myocardial infarction.


Subject(s)
Heart/physiology , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Vitamin D Deficiency/metabolism , Vitamin D/metabolism , Animals , Calcium, Dietary/metabolism , Disease Models, Animal , Inflammation/metabolism , Interleukin-1beta/metabolism , Male , Mice , Phosphorus, Dietary/metabolism , Receptors, Calcitriol/metabolism , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/physiology
9.
J Mol Med (Berl) ; 96(6): 559-573, 2018 06.
Article in English | MEDLINE | ID: mdl-29736604

ABSTRACT

The RANK (receptor activator of nuclear factor κB)/RANKL (RANK ligand)/OPG (osteoprotegerin) axis is activated after myocardial infarction (MI), but its pathophysiological role is not well understood. Here, we investigated how global and cell compartment-selective inhibition of RANKL affects cardiac function and remodeling after MI in mice. Global RANKL inhibition was achieved by treatment of human RANKL knock-in (huRANKL-KI) mice with the monoclonal antibody AMG161. huRANKL-KI mice express a chimeric RANKL protein wherein part of the RANKL molecule is humanized. AMG161 inhibits human and chimeric but not murine RANKL. To dissect the pathophysiological role of RANKL derived from hematopoietic and mesenchymal cells, we selectively exchanged the hematopoietic cell compartment by lethal irradiation and across-genotype bone marrow transplantation between wild-type and huRANKL-KI mice, exploiting the specificity of AMG161. After permanent coronary artery ligation, mice were injected with AMG161 or an isotype control antibody over 4 weeks post-MI. MI increased RANKL expression mainly in cardiomyocytes and scar-infiltrating cells 4 weeks after MI. Only inhibition of RANKL derived from hematopoietic cellular sources, but not global or mesenchymal RANKL inhibition, improved post-infarct survival and cardiac function. Mechanistically, hematopoietic RANKL inhibition reduced expression of the pro-inflammatory cytokine IL-1ß in the cardiac cellular infiltrate. In conclusion, inhibition of RANKL derived from hematopoietic cellular sources is beneficial to maintain post-ischemic cardiac function by reduction of pro-inflammatory cytokine production. KEY MESSAGES: Experimental myocardial infarction (MI) augments cardiac RANKL expression in mice. RANKL expression is increased in cardiomyocytes and scar-infiltrating cells after MI. Global or mesenchymal cell RANKL inhibition has no influence on cardiac function after MI. Inhibition of RANKL derived from hematopoietic cells improves heart function post-MI. Hematopoietic RANKL inhibition reduces pro-inflammatory cytokines in scar-infiltrating cells.


Subject(s)
Hematopoietic Stem Cells , RANK Ligand/antagonists & inhibitors , Animals , Cytokines , Male , Mesenchymal Stem Cells , Mice, Inbred C57BL , Mice, Transgenic , Myocardial Infarction/therapy , Myocytes, Cardiac , Osteoprotegerin , Receptor Activator of Nuclear Factor-kappa B , Reperfusion Injury
SELECTION OF CITATIONS
SEARCH DETAIL
...